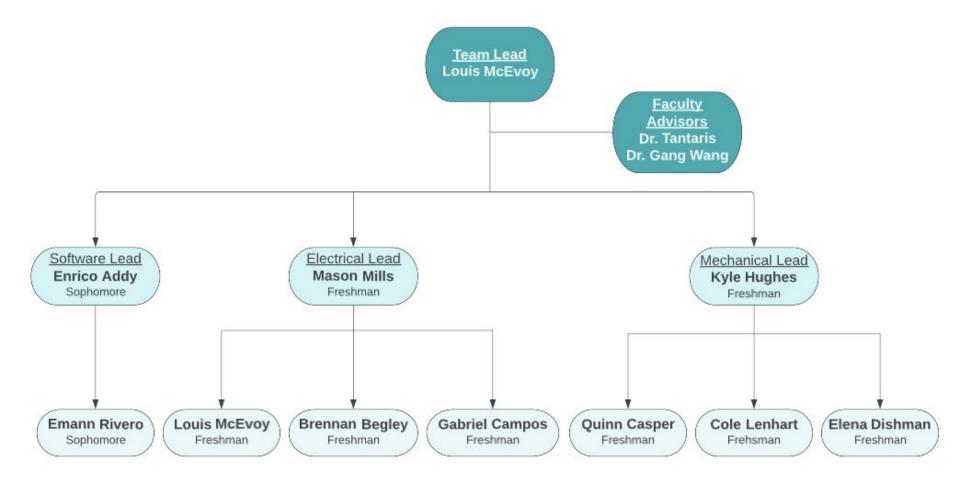


CanSat 2023 Preliminary Design Review (PDR) Version 2.0

Team 1079 Team Afterburner



Section	Presenter	Slides
Introduction	Louis McEvoy	1-8
Systems Overview	Louis McEvoy	9-27
Sensor Subsystem Design	Gabriel Campos	28-36
Descent Control Design	Quinn Casper	37-47
Mechanical Subsystem Design	Elena Dishman/Kyle Hughes/Cole Lenhart	48-79
Communication and Data Handling Subsystem Design	Brennan Begley/Emann Rivero	80-89
Electrical Power Subsystem Design	Mason Mills	90-95
Flight Software Design	Emann Rivero	96-101
Ground Control System Design	Enrico Addy	102-109
CanSat Integration and Test	Cole Lenhart	110-120
Mission Operations & Analysis	Brennan Begley	121-124
Requirements Compliance	Louis McEvoy	125-135
Management	Louis McEvoy	136-149

Team Organization

Acronym	Explanation
ADC	Analog to Digital Converter
μΑ	Microamps
API	Application Programming Interface
ARM	Advanced RISC (Reduced Instruction Set Computer) Machine
C	Degree Celsius
C _D	Coefficient of Drag
CDH	Command Data Handler
CDR	Critical Design Review
cm	Centimeter
CSV	Comma Separated Values
dBi	Decibel Relative to Isotrope
EPS	Electrical Power Subsystem

Acronym	Explanation	
EPS	Electrical Power Subsystem	
FPS	Frames per Second	
FSW	Flight Software	
G	Gravitational Shock	
g	Grams	
GHz	Gigahertz	
GND	Ground	
GPIO	General Purpose Input/Output	
GPS	Global Positioning System	
GS	Ground Station	
Hz	Hertz	
I2C	Inter-Integrated Circuit	
IDE	Integrated Development Environment	

Acronym	Explanation
КВ	Kilobytes
kg	Kilograms
KHz	Kilohertz
Kohms	Kiloohms
LED	Light Emitting Diode
m	Meter
m/s	Meters per Second
mA	Milliamps
mAh	Milliamp Hours
MCU	Microcontroller Unit
MG	Megapixel
MHz	Megahertz

Acronym	Explanation			
mm	Millimeter			
MOSFET	Metal Oxide Semiconductor Field Effect Transistor			
mWh	Milliwatt Hours			
Ν	Newton			
ns	Nanosecond			
Pa	Pascals			
PCB	Printed Circuit Board			
PETG	Polyethylene Terephthalate Glycol			
ppm	Parts Per Million			
PSI	Pound per Square Inch			
PWM	Pulse Width Modulation			
RAM	Random Access Memory			
RP	Raspberry Pi			

Acronym	Explanation
RTC	Real-Time Clock
SD	Secure Digital
SPI	Serial Peripheral Interface
TTL	Transistor-Transistor Logic
UART	Universal Asynchronous Receiver-Transmitter
UTC	Coordinated Universal Time
V	Volts
v	Velocity
VDC	Voltage Dividing Circuit
VSWR	Voltage Standing Wave Ratio
Wh	Watt Hours
yd	Yard
ρ	Density (kg/m ³)

Systems Overview

Presented by Louis McEvoy

Design a CanSat that will consist of a container and probe and simulate the landing sequence of a planetary probe.

1	The CanSat will separate from the rocket between 670 and 725 meters and descend under a parachute at 15 meters per second.				
2	At 500 meters the CanSat will	release a probe that will deploy an aerobraking heat shield.			
3	Once the probe reaches 200 r second.	neters, the probe will deploy a parachute and descend at a rate of 5 meters per			
4	Upon landing, the probe will u	pright itself and raise a flag 500 millimeters above the base of the probe.			
5	A video camera on the probe v	will point toward the ground to record the descent.			
6	The probe will transmit all requ	uired telemetry and relay sensor data to the ground station.			
		Bonus Objective			
•	• The container shall contain a camera that will record the probe deployment and its descent. Rationale: Team Afterburner has experience working with small onboard cameras aboard CanSats and are interested in using the video for evaluation an outreach.				

System Requirement Summary (1 of 4)

Req.	Description	Subsystem	Veri	ficatio	on Met	hod
#	Description		Α	I	Т	D
1	Total mass of the CanSat (science probe and container) shall be 700 grams \pm 10 grams.	MECH	x	x		
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	MECH	x		x	
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	MECH	x		x	
4	The parachutes and container shall be fluorescent pink or orange.	MECH		x		
5	Rocket airframe shall not be used in CanSat operations or to restrain any deployable systems.	MECH	x	x		
6	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	MECH	x		x	x
7	0 altitude reference shall be at the launch pad.	FSW	x		x	
8	All structures shall withstand 15 Gs of launch acceleration as well as 30 Gs of Shock.	MECH			x	x
9	All electrical and mechanical components shall be hard mounted.	MECH,EPS	x	X		

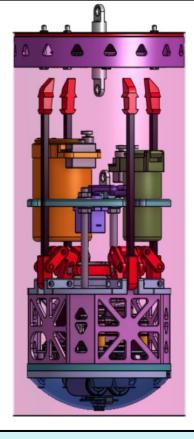
System Requirement Summary (2 of 4)

Req.	Description	Subsystem	Veri	ification Method			
#	Description	Subsystem	Α	I	т	D	
10	Cost of CanSat shall be under 1000 dollars.	MANAGEMENT	x	x			
11	2.4 GHz or 900 MHz XBee Radios shall be used for telemetry and set to not to broadcast mode.	CDH		x			
12	Probe and container must contain power switches that can be accessed in the stowed configuration.	MECH	x	x			
13	Probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the CanSat and in the stowed state. The probe requires an audio beacon to be activated after landing.	EPS	x	x		x	
14	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	EPS, MECH	x			x	
15	CanSat shall survive all required environmental tests as established in the mission guide.	EPS, MECH			X	x	
16	The CanSat shall operate for a minimum of two hours when integrated into the rocket.	EPS	x		x	x	

System Requirement Summary (3 of 4)

Req.	Description	Subovotom	Veri	Verification Method				
#	Description Subsystem		Α	I	т	D		
17	The probe shall be released from the container when the CanSat reaches 500 meters and deploy a heat shield.	EPS, MECH, FSW			x	x		
18	Heat shield will limit probe descent rate to 20 m/s or less.	EPS, MECH, FSW			x	x		
19	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s ±1 m/s.	EPS, MECH, FSW			x	x		
20	Once landed, the probe shall upright itself.	EPS, MECH, FSW			x	x		
21	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe.	EPS, MECH, FSW				x		
22	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	CDH, FSW	x			x		
23	The probe shall include a downward facing video camera to record the flight of the probe from release to landing.	EPS	x		x			
24	Probe will maintain packet count, mission time, and configuration state through processor resets.	FSW	x			x		

System Requirement Summary (4 of 4)

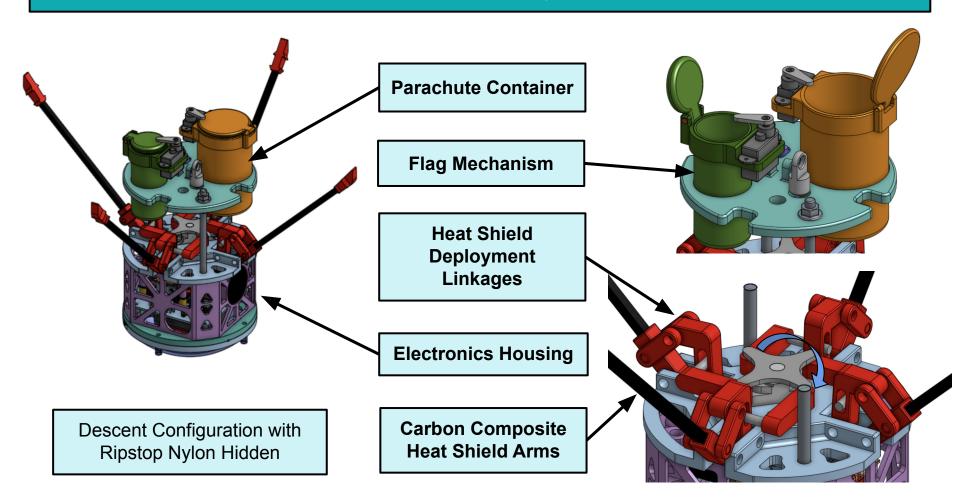

Req.	Description	Subsystem	Veri	ficatio	on Met	hod
#	Description	Subsystem	Α	I	т	D
25	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile CSV file.	FSW	x			x
26	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the container altitude.	FSW	x			x
27	The container flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	FSW	x			x
28	The ground station shall generate CSV files of all sensor data as specified in the Telemetry Requirements section.	CDH, GCS	x			x
29	Each team shall develop their own ground station.	GCS		x		x
30	All telemetry shall be displayed in real time during descent to the ground and plot each data field in real time.	GCS		X		x
31	All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.).	GCS		x	x	
32	Container shall include a camera to satisfy the bonus objective.	EPS	x			x

System Level CanSat Configuration Trade & Selection (1 of 5)

4 Arm 1 Servo System

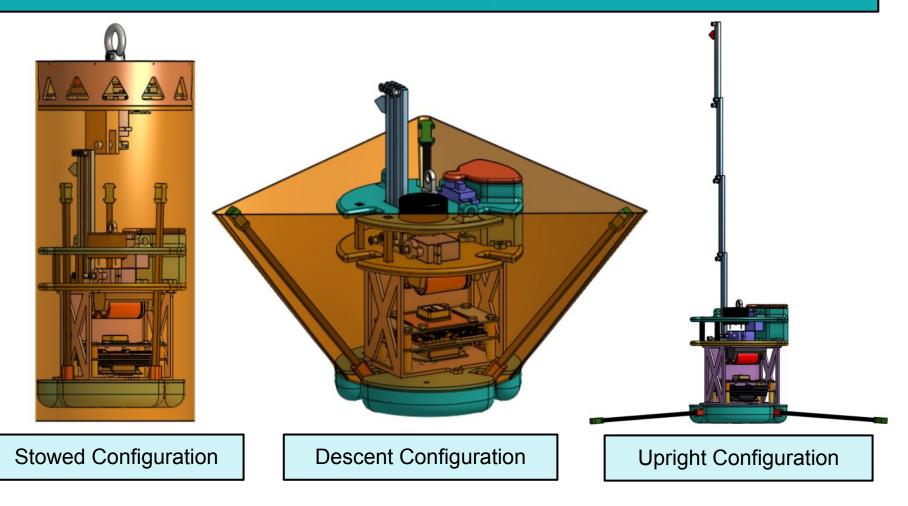
Stowed Configuration

Descent Configuration


Upright Configuration

System Level CanSat Configuration Trade & Selection (2 of 5)

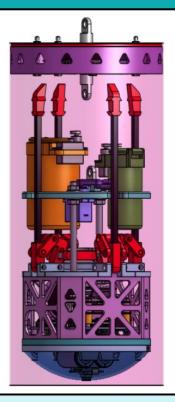
4 Arm 1 Servo System



System Level CanSat Configuration Trade & Selection (3 of 5)

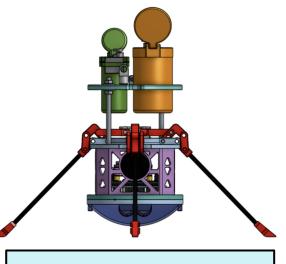
3 Arm 3 Servo System

System Level CanSat Configuration Trade & Selection (4 of 5)


3 Arm 3 Servo System **Cascading Rail Flag Mechanism Parachute** Deployment **3 Servo Mounting Plates Carbon Composite** Descent Configuration with **Ripstop Nylon Hidden Heat Shield Arms**

System Level CanSat Configuration Trade & Selection (5 of 5)

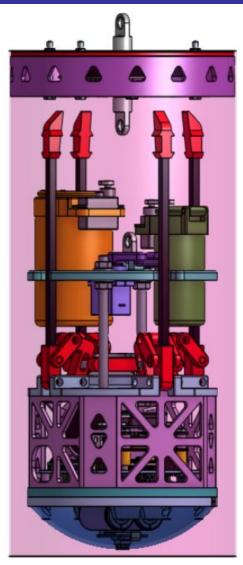
<u>Selection:</u> 4 Arm 1 Servo System



Stowed Configuration

Design	Heat Shield Arm Count	Container Mass (g)	Descent Stabilization Method	Total Servo Count
4 Arm 1 Servo	4	195.7	Passive	4
3 Arm 3 Servo	3	269.8	Active	6

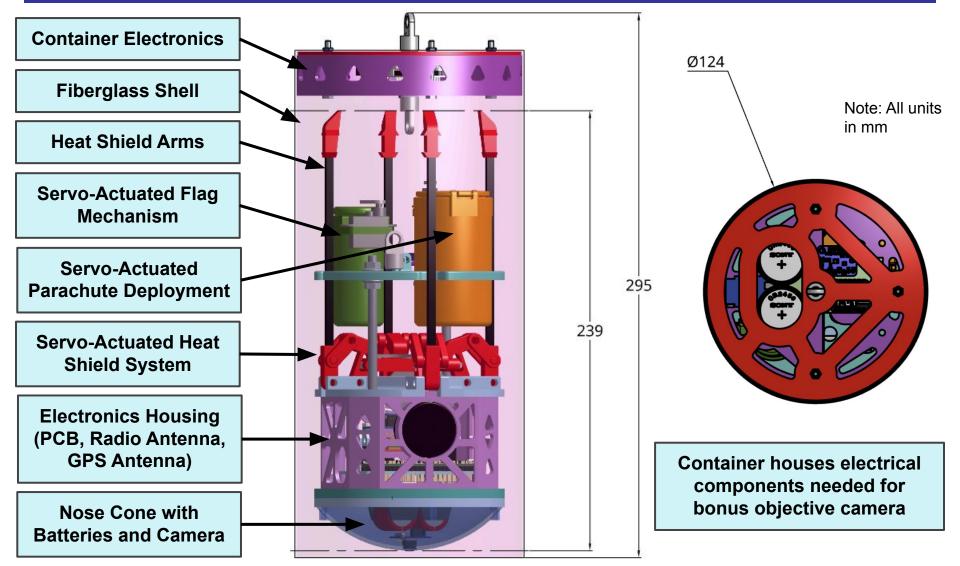
Descent Configuration


Selection: 4 Arm 1 Servo System

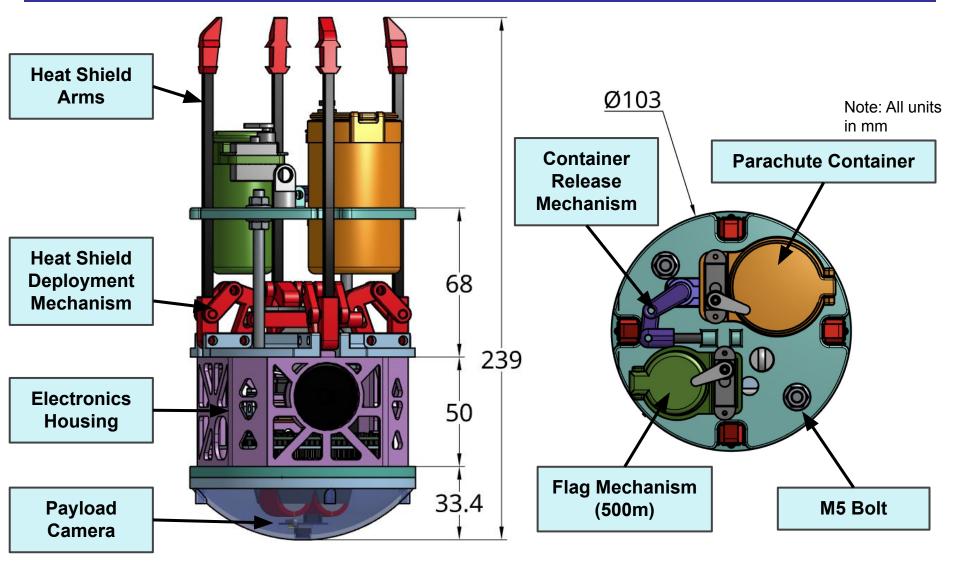
Rationale:

- Heat shield arms support CanSat during launch
- Parachute deploys substantially quicker
- Rounded nose cone eases uprighting
- 4 heat shield arms creates larger cross-sectional area
- Easy camera and battery access
- Minimal container and bonus objective mass

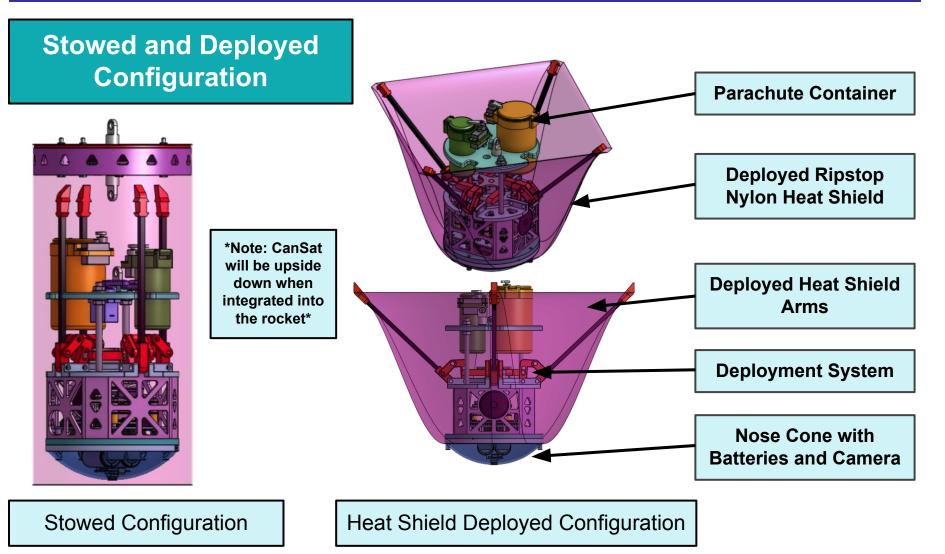
Drawbacks:

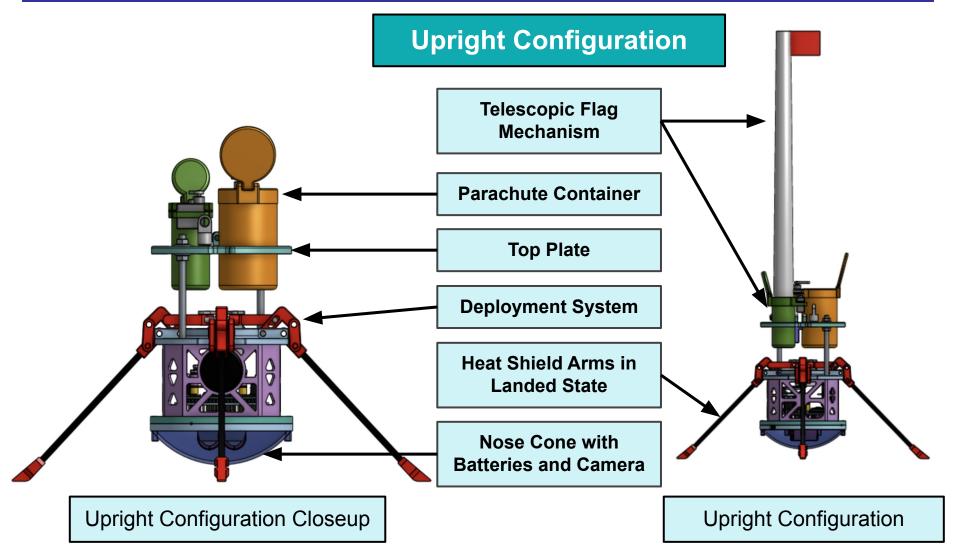

- Greater moment on the payload arms
- Greater complexity of the deployment mechanism
- Inefficient flag mechanism

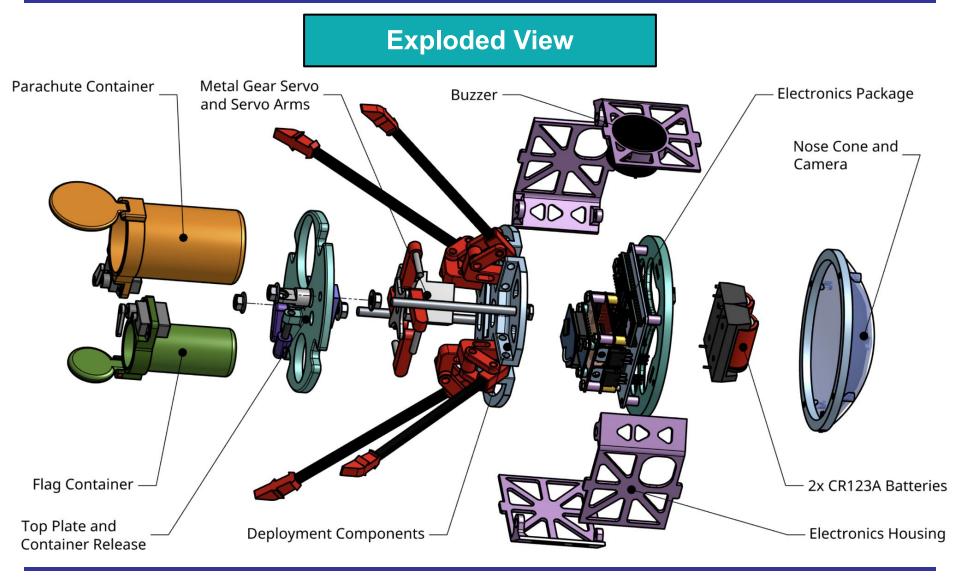
Physical Layout (1 of 5)

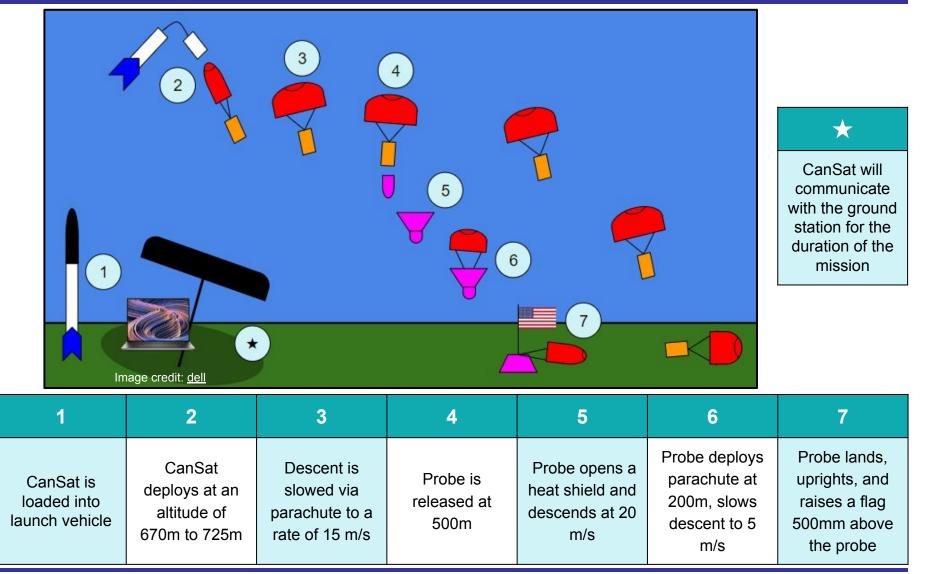


Physical Layout (2 of 5)

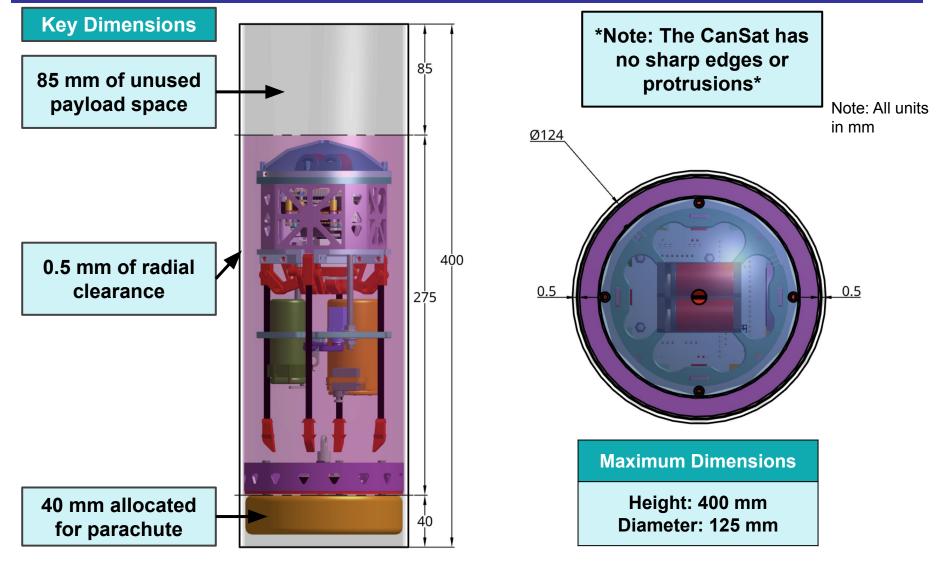



Physical Layout (3 of 5)





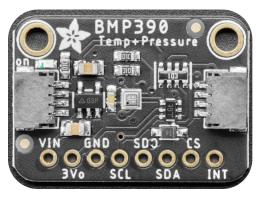
System Concept of Operations



Launch Vehicle Compatibility

Sensor Subsystem Design

Presented by Gabriel Campos

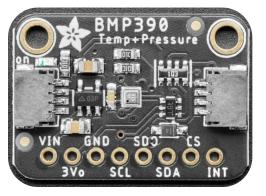

Required	Sensor	Purpose
Air Pressure	BMP390	Provide altitude data that is used to trigger the different flight states of the payload, as well as providing pressure telemetry
Air Temperature	BMP390	Provide temperature data inside the CanSat, which is used for telemetry
Battery Voltage	Analog Digital Converter of MCU	Provide status of the batteries' voltage, aiding in troubleshooting of electronics
Orientation	BNO055	Provide the orientation of the payload used to self right, and provide telemetry of the payload acceleration in 3D space
GPS	SAM - M8Q	Provide location of CanSat, aiding in payload recovery
Video	Adafruit Spycamera	Record for the duration of the mission which is to be viewed afterwards to aid in data analysis

Payload Air Pressure Sensor Trade & Selection

Module	Accuracy	Max Current Draw (mA)	Area (mm²)	Price (\$)	Software Resources
BMP390	± 3 Pascals/ ±0.25 meters	0.730	359	10.95	Adafruit_BMP3XX Coding Library
MPL3115A2	± 4 Pascals/ ±0.30 meters	2.0	342	9.95	Built in pressure to altitude conversion
Parallax 29124	± 2.5 Pascals/ ±0.20 meter	1.74	438	29.99	Comes with example code

Selection: BMP390

- Low power draw
- Comes with coding library
- Built in temperature sensor

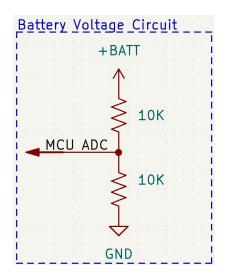

Image credit: adafruit.com

Payload Air Temperature Sensor Trade & Selection

Module	Typical Accuracy (°C)	Max Current Draw (μA)	Area (mm²)	Price (\$)
BMP390	± 0.50	320	359	10.95
TMP117	± 0.10	220	220	11.50
MCP9808	± 0.25	200	273	4.95

Selection: BMP390

- Integrated into pressure sensor
- Less total area and mass
- Adequate accuracy

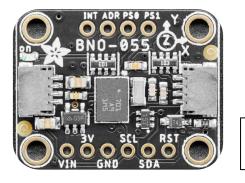

Image credit: adafruit.com

Payload Battery Voltage Sensor Trade & Selection

Module	Dimension (mm)	Weight (g)	Accuracy (%)	Max Voltage Read (V)	Price (\$)
Analog Digital Converter of MCU	5.0 x 5.0 x 2.0	0.5	±3	6.6	0.50
Adafruit INA260	22.9 x 22.8 x 2.7	2.0	±1	36	9.95

Selection: Analog Digital Converter of MCU

- Integrated in MCU, only requires two resistors
- Small and lightweight
- Low additional cost



Payload Tilt Sensor Trade & Selection

Image credit: Adafruit.com

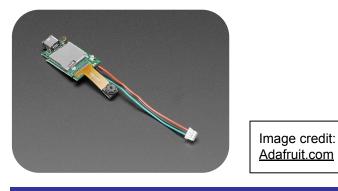
Module	Max Current Draw (mA)	Gyroscope Accuracy (degrees)	Magnetometer Accuracy (degrees)	Accelerometer Accuracy (mm/s)	Price (\$)
Absolute Orientation IMU BNO055	29	± 0.97	± 2.50	19.16	29.95
SparkFun 9DoF IMU ICM-20948	3.11	± 1.00	Not Listed	15.63	18.50

Selection: IMU BNO055

- Well documented libraries
- Easy to integrate with other Adafruit sensors
- Four point quaternion angles

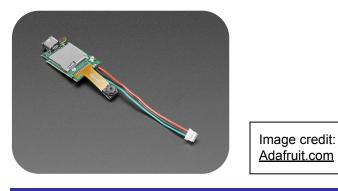
Payload GPS Sensor Trade & Selection

Module	Accuracy (m)	Max Current Draw (mA)	Hot Start Acquisition (s)	Antenna Type	RTC Battery	Price (\$)
SparkFun SAM-M8Q Chip Antenna	2.5	29	~1	Internal	Included on board	42.95
SparkFun - ZOE-M8Q	2.5	25	~1	External	Included on board	49.95
Adafruit PA1616S	3.3	30	34	Internal, External	Not included	29.95


Image credit: Sparkfun.com Selection: SparkFun SAM-M8Q Chip Antenna

- Quick satellite acquisition
- Internal antenna

Module	Resolution/ Frame Rate	Max Current Draw (mA)	Voltage (V)	Connection Type	Price (\$)
Adafruit Spycamera	640 x 480 Video / 30 fps	110	3.7 - 5.0	Digital	12.50
TTL Serial JPEG Camera	640 x 480 Video / 30 fps	75	5.0	Digital TTL	39.95
Arducam 5MP Plus OV5642	2592 x 1944 Video / 15 fps	Not Listed	5.0	SPI	42.95

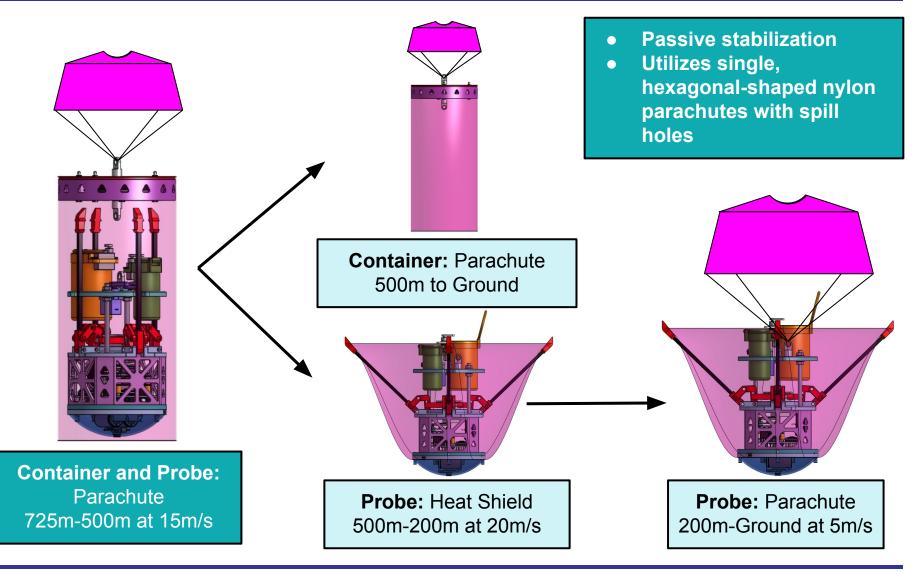

Selection: Adafruit Spycamera

- Embedded SD card reader
- Resolution fulfills requirements
- Prior experience using sensor

Module	Resolution/ Frame Rate	Max Current Draw (mA)	Voltage (V)	Connection Type	Price (\$)
Adafruit Spycamera	640 x 480 Video / 30 fps	110	3.7 - 5.0	Digital	12.50
TTL Serial JPEG Camera	640 x 480 Video / 30 fps	75	5.0	Digital TTL	39.95
Arducam 5MP Plus OV5642	2592 x 1944 Video / 15 fps	Not Listed	5.0	SPI	42.95

Selection: Adafruit Spycamera

- Embedded SD card reader
- Resolution fulfills requirements
- Prior experience using sensor


Descent Control Design

Presented by Quinn Casper

Descent Control Overview

Container Descent Control Strategy Selection and Trade

Shape	Mass (g)	Average Angle of Oscillation (Degrees)	Paracord Lines
Hexagonal	20	±10 to ±15	6
Round	23	±10 to ±40	4

Material	Tensile Strength (psi)	Porosity (%)	Price (\$/yd²)	Density (g/m³)
Ripstop Nylon	72,519	25.8	9	48
Silk	87,023	35.0	22	35

Shape Selection: Hexagonal

- Less oscillation during freefall
- Easy to manufacture
- Lighter

Material Selection: Nylon

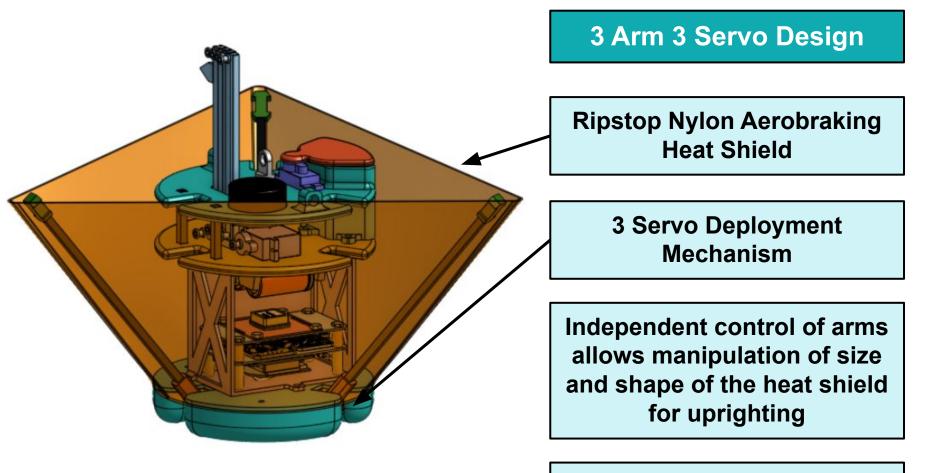
- Lower porosity produces more drag
- High tensile strength
- Cost effective

Payload Aerobraking Descent Control Strategy Selection and Trade (1 of 3)

4 Arm 1 Servo Design

Mechanism is actuated to change heat shield surface area from stowed to deployed

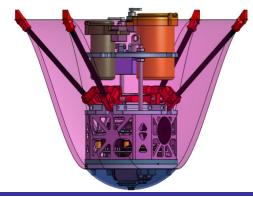
Ripstop Nylon Aerobraking Heat shield


Single servo deployment mechanism

Passive stabilization

Payload Aerobraking Descent Control Strategy Selection and Trade (2 of 3)

Active stabilization

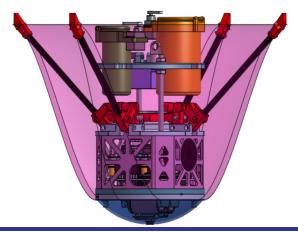

Payload Aerobraking Descent Control Strategy Selection and Trade (3 of 3)

Design	Stabilization	Heat Shield Area (cm²)	Deployment Power Consumption (mWh)	Heat Shield Arm Count
Design 1: 4 Arm 1 Servo System	 Passive Reliant on center of mass staying below center of drag 	425	46	4
Design 2: 3 Arm 3 Servo System	 Active Independent control of arms to combat swaying 	325	108	3

Selection: Design 1 (4 Arm 1 Servo)

- Reduced power consumption
- Stronger rod attachment
- Fourth arm gives more attachment points for the heat shield, increasing its surface area and stability

Payload Aerobraking Descent Stability Control Strategy Selection and Trade



Design	Stabilization	Heat Shield Control Actuation	Heat Shield Servo Count	Cross-sectional Area
Design 1: 4 Arm 1 Servo System	 Passive Reliant on center of mass staying below center of drag 	Diameter	1	Square
Design 2: 3 Arm 3 Servo System	 Active Independent control of arms to combat swaying 	Diameter and Shape	3	Triangle

Selection: Passive Control

- Decreased stability, design, and programming time
- Reduced power consumption due to lower servo motor count
- Square cross section increases stability

Design 1 (4 Arm 1 Servo) utilizes passive control

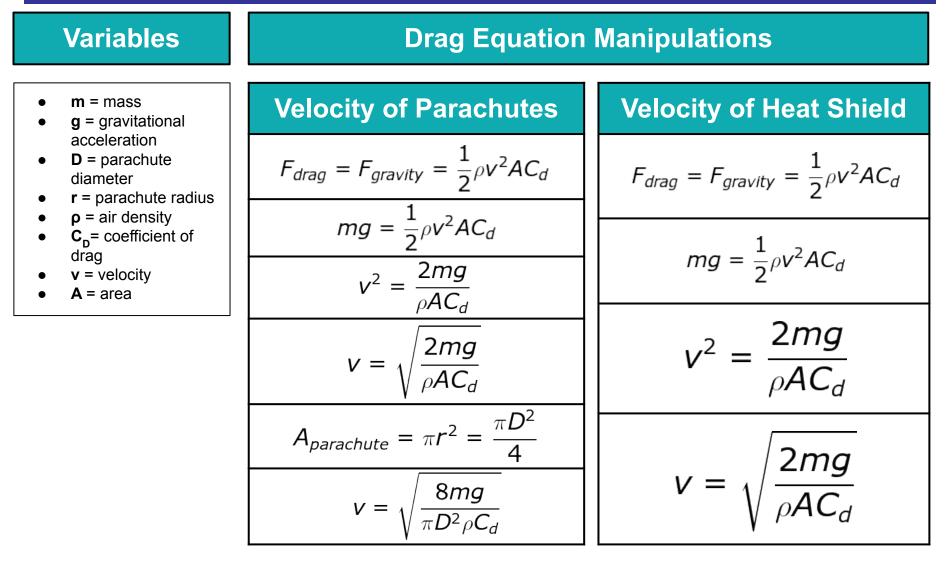
Payload Parachute Descent Control Strategy Selection and Trade

Shape	Mass (g)	Average Angle of Oscillation (Degrees)	Paracord Lines
Hexagonal	20	±10 to ±15	6
Round	23	±10 to ±40	4

Material	Tensile Strength (psi)	Porosity (%)	Price (\$/yd²)	Density (g/m²)
Ripstop Nylon	72,519	0	9	48
Silk	87,023	35	22	35

Shape Selection: Hexagonal

- Reduced oscillation during freefall
- Easy to manufacture
- 3 grams lighter


Material Selection: Nylon

- Zero porosity produces more drag
- High tensile strength
- Cost effective

Both payloads utilize hexagonal shape, ripstop nylon, and spill hole design for their parachute

Assumptions & Variables

- CanSat is 700g
- Probe is 500g
- Heat shield is a tetrahedron
- Heat shield area is smaller due to having only three attachment points

Competing Configuration Calculations

Container and Probe Parachute

$$\gamma = \sqrt{\frac{8(.7kg)(9.8\frac{m}{s^2})}{(1.3\frac{kg}{m^3})\pi(.21m)^2(1.5)}} = 14.3 \frac{m}{s}$$

Probe Aerobraking Heatshield

- g = gravitational acceleration = 9.8 m/s²
- **D** = parachute diameter
- ρ = air density = 1.3 kg/m³
- C_D = coefficient of drag (estimated)
- **v** = velocity

$$v = \sqrt{\frac{2(.5kg)(9.8\frac{m}{s^2})}{(1.3\frac{kg}{m^3})(3.25x10^{-2} m^2)(.666)}} = 18.7$$

$$v = \sqrt{\frac{8(.5kg)(9.8\frac{m}{s^2})}{(1.3\frac{kg}{m^3})\pi(.55m)^2(1.5)}} = 4.60 \frac{m}{s}$$

Assumptions & Variables

- CanSat is 700g
- Probe is 500g
- Heat shield is a square truncated pyramid
- Heat shield area is larger due to having four attachment points
- **m** = mass
- g = gravitational acceleration = 9.8 m/s²
- **D** = parachute diameter
- ρ = air density = 1.3 kg/m³
- C_D = coefficient of drag (estimated)
- **v** = velocity

Selected Configuration Calculations and Summary

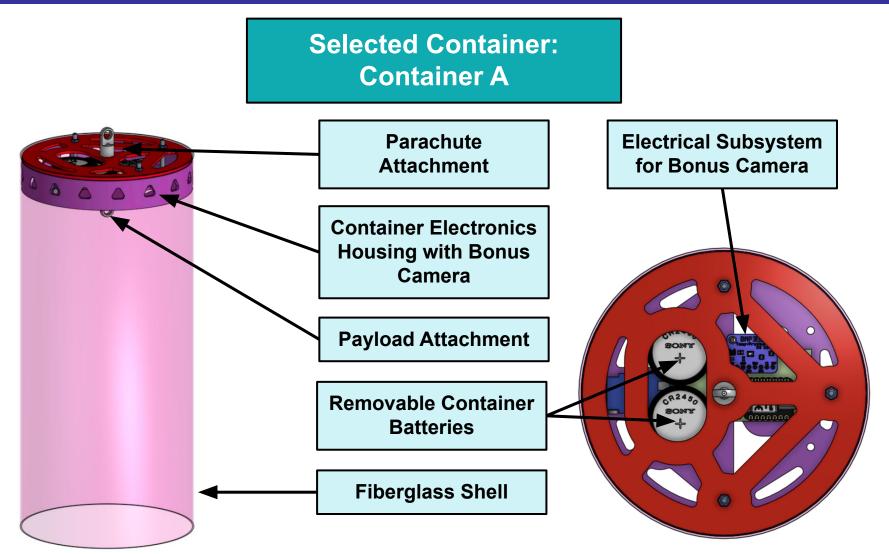
Container and Probe Parachute

$$v = \sqrt{\frac{8(.7kg)(9.8\frac{m}{s^2})}{(1.3\frac{kg}{m^3})\pi(.21m)^2(1.5)}} = 14.3 \frac{m}{s}$$

Probe Aerobraking Heatshield

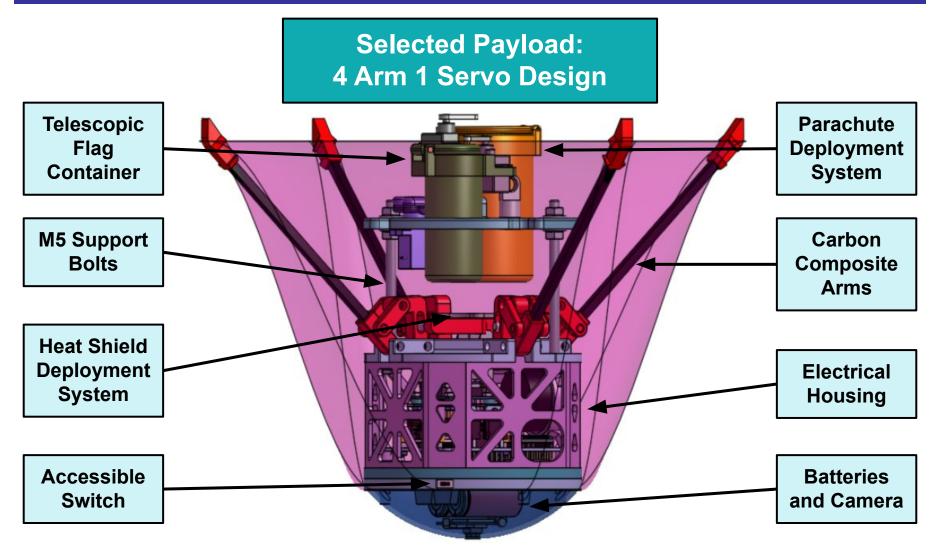
$$v = \sqrt{\frac{8(.5kg)(9.8\frac{m}{s^2})}{(1.3\frac{kg}{m^3})(4.25x10^{-2} m^2)(1.5)}} = 16.3 \frac{m}{s}$$

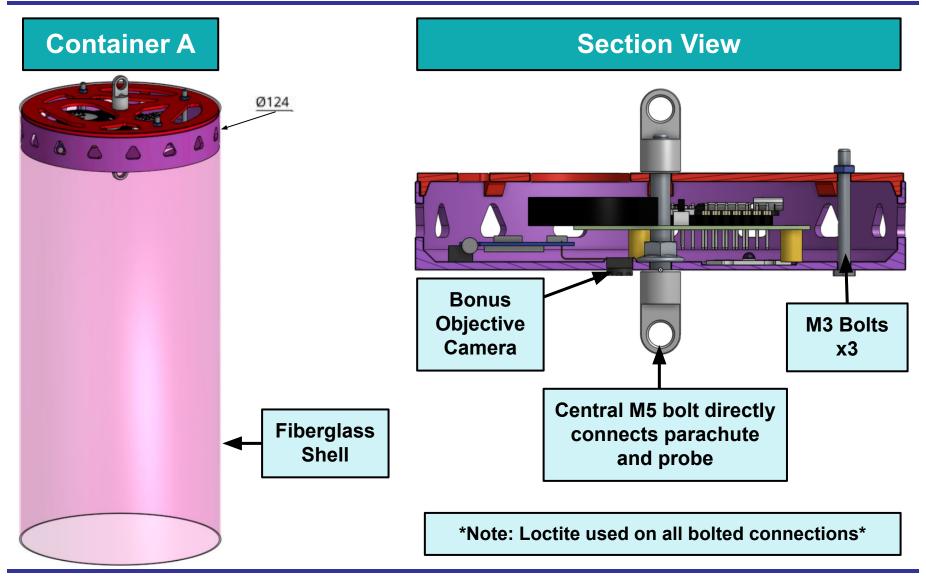
$$v = \sqrt{\frac{8(.5kg)(9.8\frac{m}{s^2})}{(1.3\frac{kg}{m^3})\pi(.55m)^2(1.5)}} = 4.60 \frac{m}{s}$$



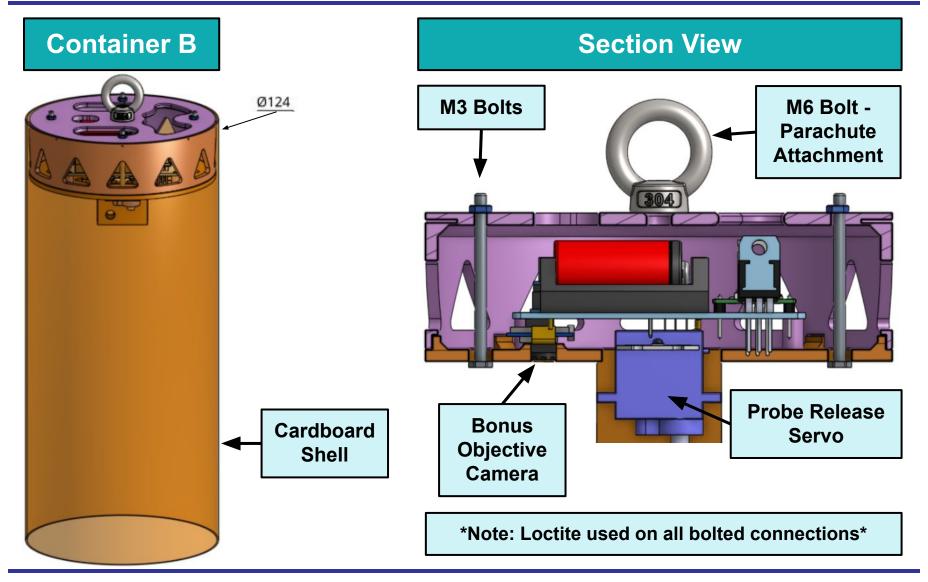
Mechanical Subsystem Design

Presented by Elena Dishman, Kyle Hughes, & Cole Lenhart





Container Mechanical Layout of Components Trade & Selection (1 of 3)

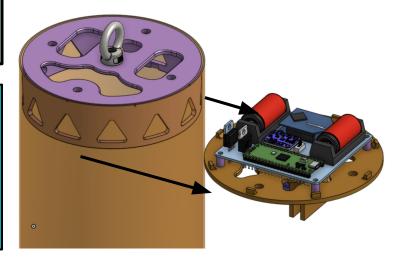


Container Mechanical Layout of Components Trade & Selection (2 of 3)

Container Mechanical Layout of Components Trade & Selection (3 of 3)

Container	Mass (g)	Length (mm)	Shell Material	Total Energy Consumption (Wh)
А	195.7	296	Fiberglass	1.5
В	269.8	309.5	Cardboard	4.9

Container A	Selection: Container
	 Low power const Lightweight Durable fiberglas Reduced contain
	 The filament for all 3 will be PETG becaus High tensile strend (7700 PSI) Low density (1.24) Easy manufacture

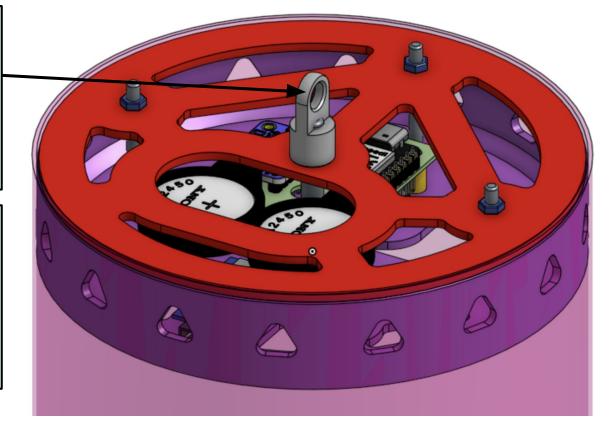

r A

- sumption
- ss shell
- ner length

D prints se:

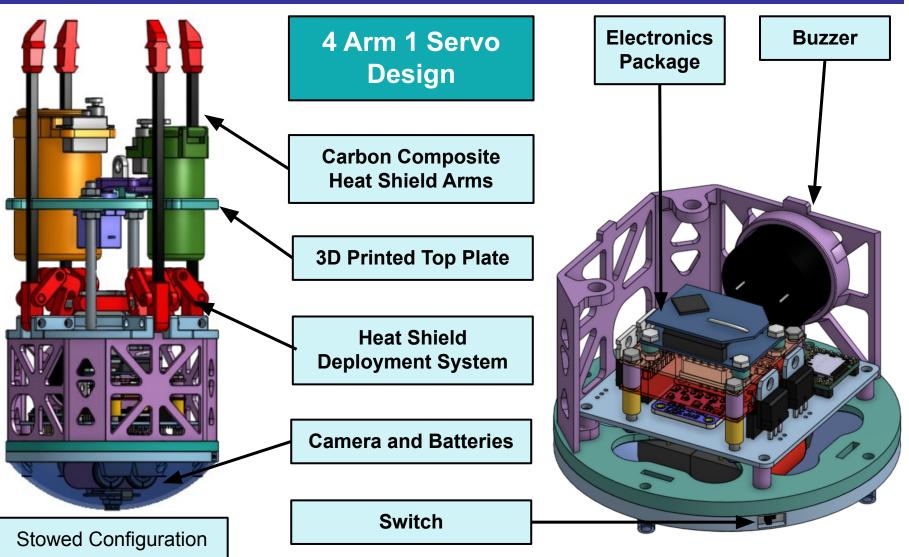
- ength
- 25g/cm³)
- iring

Container B



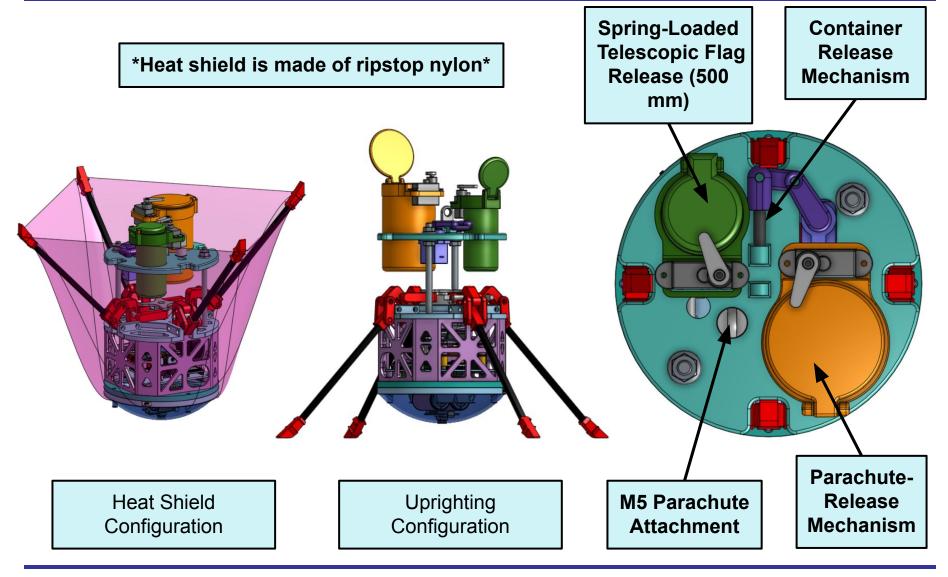
Container Parachute Attachment Mechanism

- Container parachute is attached via an M5 swiveling eye nut and bolt in the center of the container
- Central bolt passes through PCB and directly connects to probe attachment point

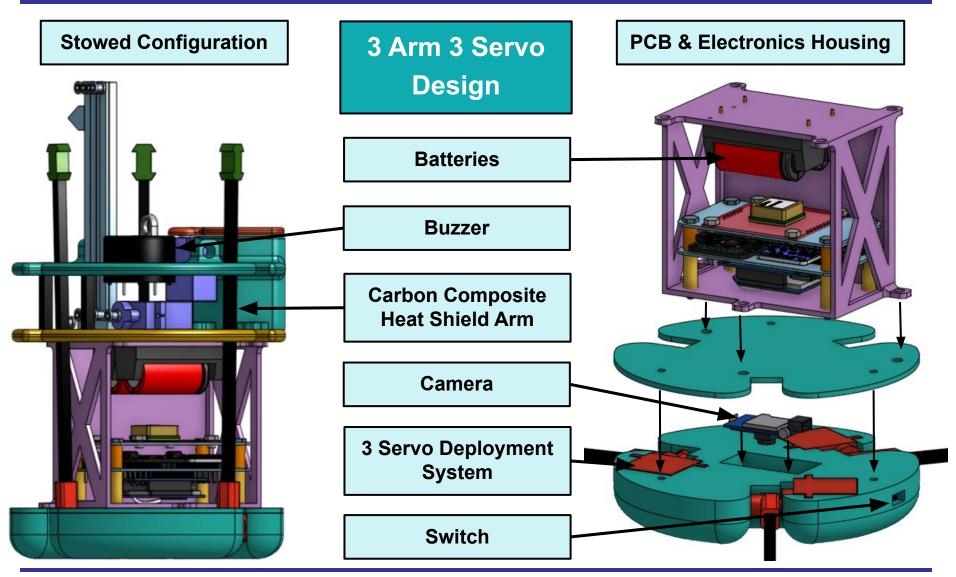


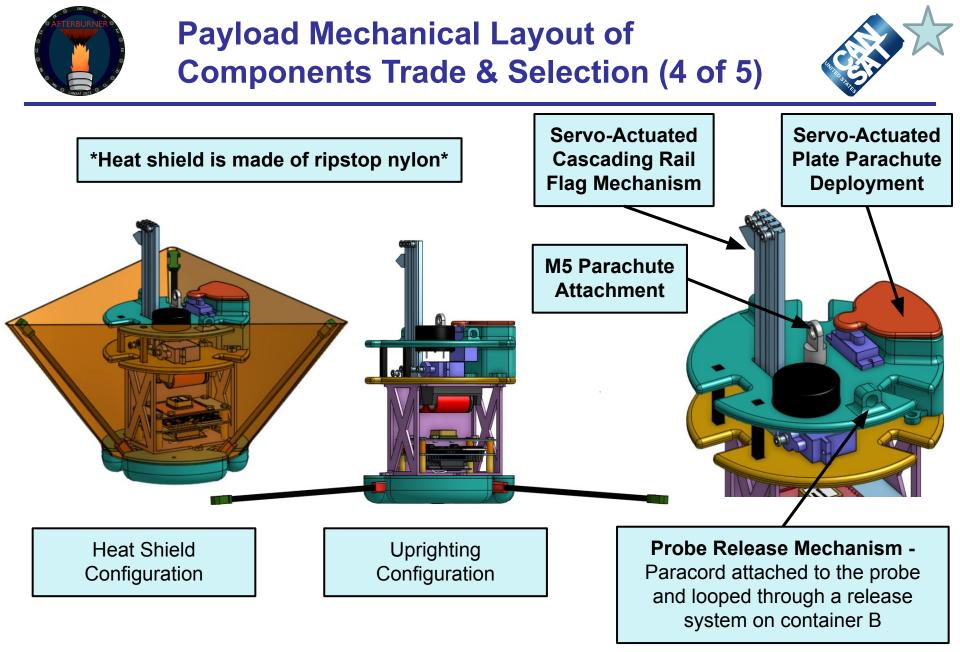
Note: The parachute will be folded in such a way that it can release passively after rocket separation

Payload Mechanical Layout of Components Trade & Selection (1 of 5)



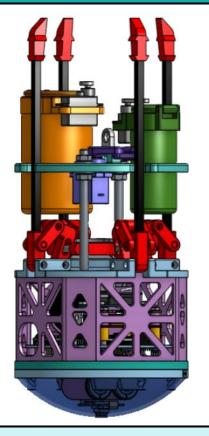
Payload Mechanical Layout of Components Trade & Selection (2 of 5)





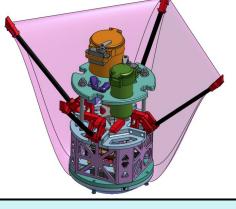
Payload Mechanical Layout of Components Trade & Selection (3 of 5)

Presenter: Elena Dishman

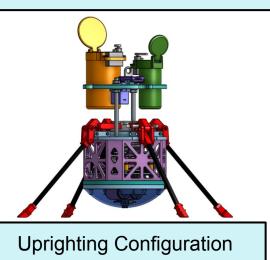


Payload Mechanical Layout of Components Trade & Selection (5 of 5)

<u>Selection:</u> 4 Arm 1 Servo Design

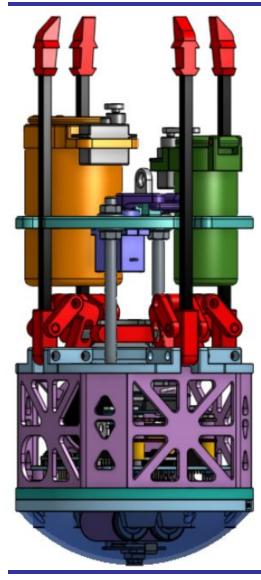


Stowed Configuration

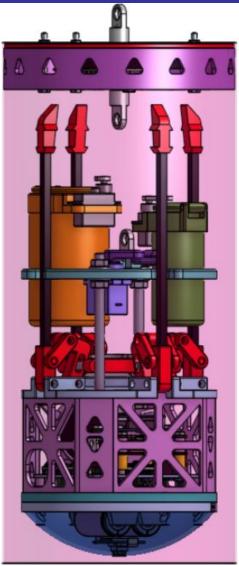

Design	Total Servos	Heart Shield Arms	Battery Access
4 Arm 1 Servo	4	4	Easy
3 Arm 3 Servo	6	3	Difficult

Selection: 4 Arm 1 Servo:

- Battery access time meets mission requirements
- Reduced power draw due to lower servo count
- Additional heat shield arms supports CanSat during launch and landing


Heat Shield Configuration

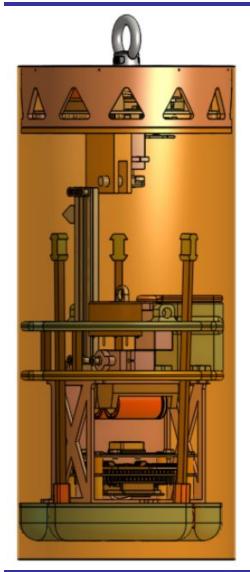
Payload Aerobraking Pre Deployment Configuration Trade & Selection (1 of 3)


4 Arm 1 Servo System

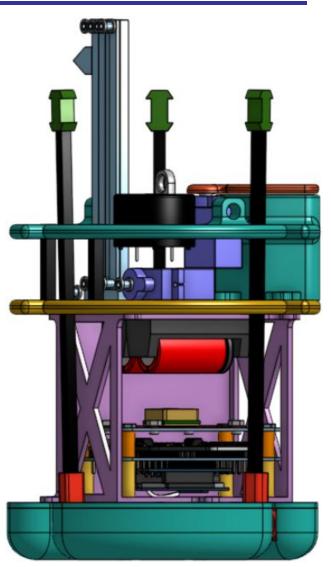
<u>Pros</u>

- Greater radial clearance for deployment from container
- Low chance of nylon interfering with probe components

<u>Cons</u>


- Possibility of heat shield arms sliding on container walls
- Deployment mechanism supports mass of CanSat during launch

Payload Aerobraking Pre Deployment Configuration Trade & Selection (2 of 3)

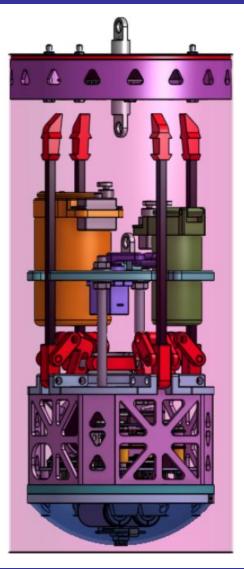

3 Arm 3 Servo System

<u>Pros</u>

- Plates act as sliding surface
- Heat shield arms are completely vertical and protected by plates

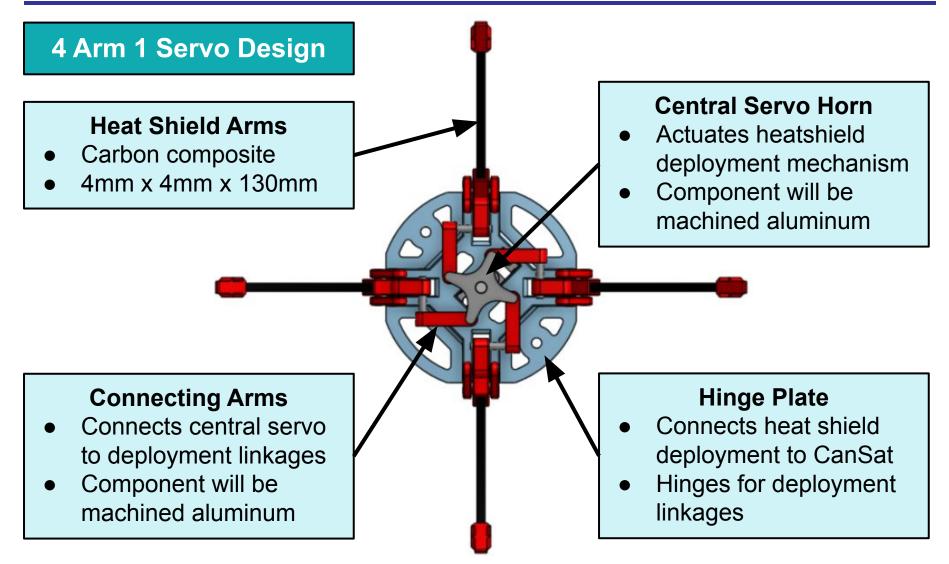
<u>Cons</u>

- Increased probability of heat shield material getting caught on plates
- Flag raising mechanism potentially interferes with container during launch

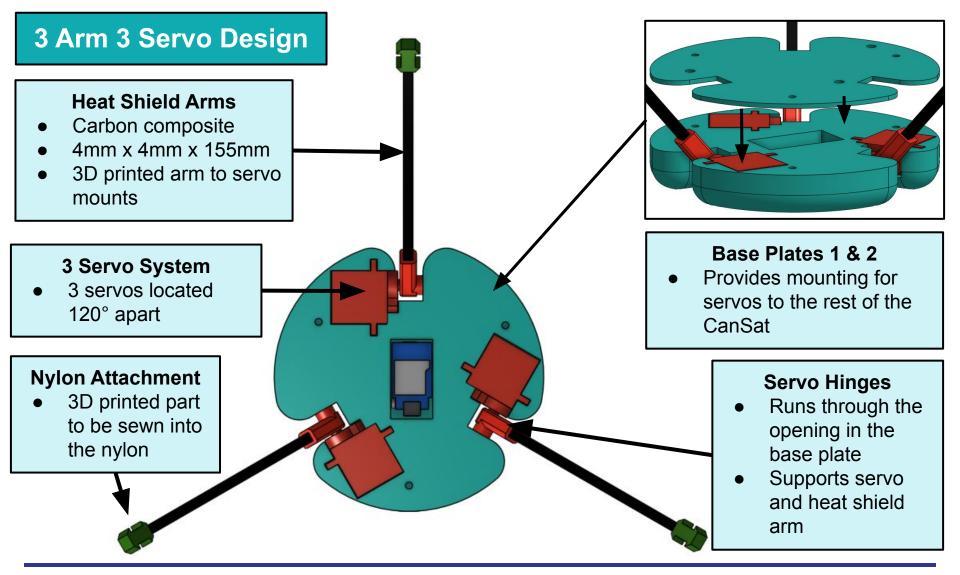

Payload Aerobraking Pre Deployment Configuration Trade & Selection (3 of 3)

	<u>Selection</u> Servo S		
Design	Probe Diameter (mm)	Nylon Pinch Points	Launch Force per Contact Point (N)
4 Arm 1 Servo	103	No	36.8
3 Arm 3 Servo	115	Yes	147

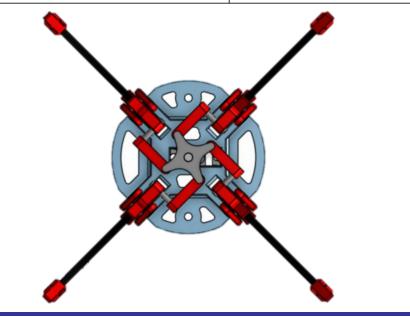
Rationale:


- Greater radial clearance for deployment from container
- Low chance of nylon interfering with probe components
- Four points of contact of deployment system supports CanSat while upside down instead of flag mechanism

Payload Aerobraking Deployment Configuration Trade & Selection (1 of 3)



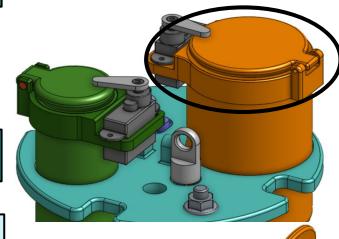
Payload Aerobraking Deployment Configuration Trade & Selection (2 of 3)



<u>Selection:</u> 4 Arm 1 Servo Design

Design	Number of Servos	Area When Deployed (mm²)	Application of Force
4 Arm 1 Servo	1	42,500	Arms and Hinges
3 Arm 3 Servo	3	32,500	Servo

- Single servo reduces mass and failure points
- Strong points of attachment for arms
- Additional arm increases support and surface area of heat shield


Payload Parachute Deployment Configuration Trade & Selection (1 of 3)

Option 1

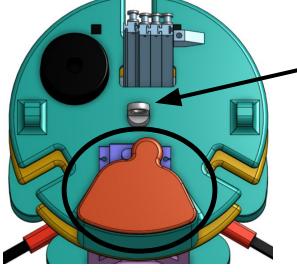
Mortar Release

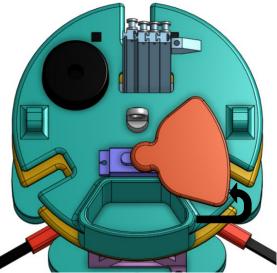
- Servo holds container lid closed
- Servo turns and allows parachute to be ejected by a spring and piston

Mortar Deployment

- Fast Parachute Deployment
- Reliable spring
 mechanism
- Large footprint on top plate

M5 Eye Nut Probe Parachute Attachment


Payload Parachute Deployment Configuration Trade & Selection (2 of 3)



Option 2

Plate & Servo Parachute Release

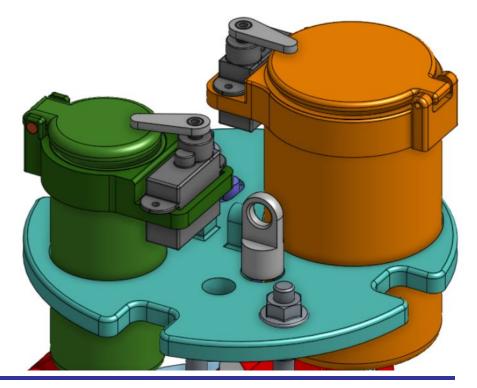
- Servo is connected to a plate that holds the parachute in a storage compartment
- Servo turns and allows the parachute to catch air and unfold

M5 Eye Nut Probe Parachute Attachment

Servo Plate Release

- Higher chance of entanglement
- Moving plate could collide with CanSat components
- Chance of unfolding while stowed

Payload Parachute Deployment Configuration Trade & Selection (3 of 3)



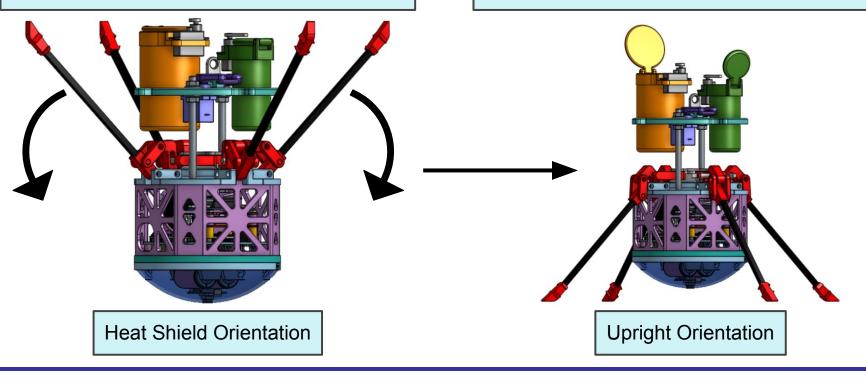
Design	Deployment Style	Area When Deployed (mm²)	Volume (mm³)
Mortar Release	Spring actuated	1392.05	67,512
Plate and Servo Release	Relies on wind	2631.07	32,485

Selection: Mortar Release

- Low chance of entanglement
- Parachute is firmly held in compartment
- More consistent releases due to spring release

4 Arm 1 Servo System utilizes mortar release

Payload Uprighting Configuration Trade & Selection (1 of 3)


4 Arm 1 Servo Design

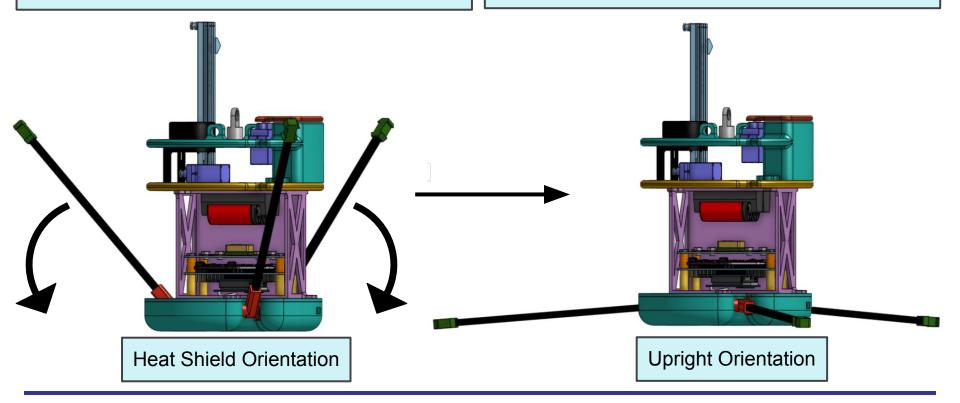
<u>Pros</u>

- Deployment mechanism linkages bear the landed weight instead of the servo
- Low center of mass eases uprighting action

<u>Cons</u>

- Narrow base when landed
- Extra heat shield material is folded back
- Only 2 threaded rods securing top plate and base during force of landing

Payload Uprighting Configuration Trade & Selection (2 of 3)

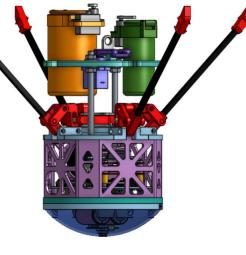

3 Arm 3 Servo Design

Pros

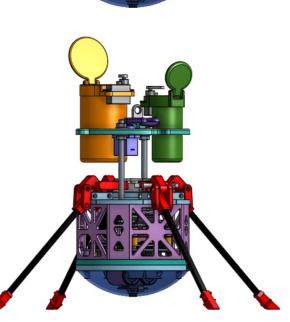
- Wide base when upright
- Servos can actuate independently of each other in case of failure

<u>Cons</u>

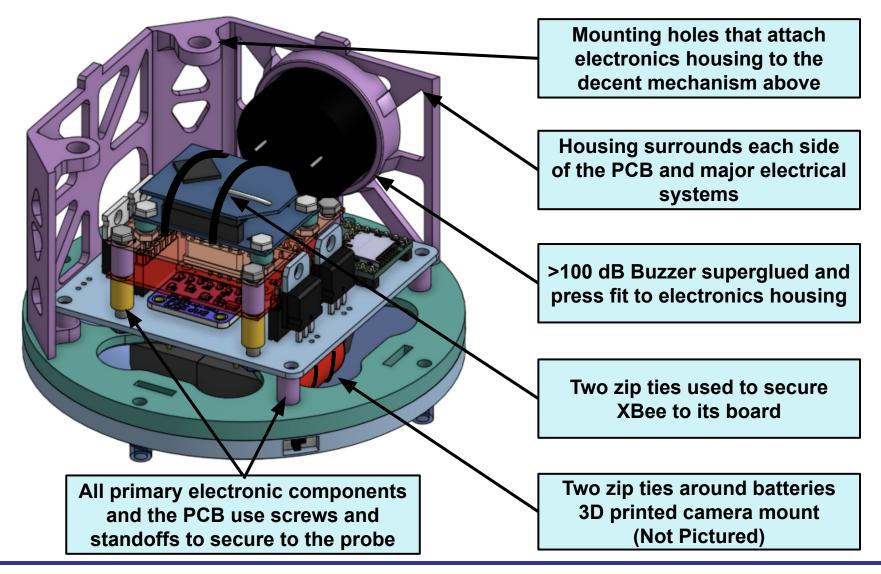
- Servo motor horns are stress points when when uprighting
- Only 3 uprighting arms



Payload Uprighting Configuration Trade & Selection (3 of 3)


<u>Selection:</u> 4 Arm 1 Servo Design

Servo Count	Footprint (mm^2)	Heat Shield Arms	Landing Shape
1	45,800	4	Square
3	50,600	3	Triangle


Rationale:

- Distribution of landing force throughout deployment mechanism linkages rather than servo horns
- 4 heat shield arms provides additional uprighting capability and points of contact with ground

	Co	ontainer (1	of 2)	
Component	Quantity	Mass (g)	Mass Summary (g)	Source
Seeed RP 2040	1	0.8	0.8	Datasheet
Adafruit Spycamera	1	2.8	2.8	Datasheet
BMP390	1	3.0	3.0	Measured
P-Channel MOSFET	1	2.0	2.0	Measured
CR2450 Battery	2	6.2	12.4	Datasheet
Switch	1	2.0	2.0	Measured
Small PCB	1	6.0	6.0	Measured
Battery Holders	2	2.0	4.0	Measured
(Wires, Solder, Misc)	1	10.0	10.0	Estimate
Electrical Total	-	-	41.0	-

	Container (2 of 2)			
Component	Quantity	Mass (g)	Mass Summary (g)	Source
Fiberglass Shell	1	60.0	60.0	Measured
M5 40mm Threaded Rod	1	4.4	4.4	Manufacturer
M5 Eye Nuts	2	7.0	14.0	Manufacturer
M5 Nuts	1	1.7	1.7	Manufacturer
Nylon Parachute	1	15	15	Estimate
Container Wafer Top	1	43.2	43.2	Estimate
Container Wafer Bottom	1	16.4	16.4	Estimate
Mechanical Total	-	-	154.7	-
Electrical Total	-	-	41.0	-
Container Total	-	-	195.7	-

	Probe (1 of 4)			
Component	Quantity	Mass (g)	Mass Summar	ry (g) Source
Teensy 4.1	1	2.8	2.8	Datasheet
Adafruit Spycamera	1	2.8	2.8	Datasheet
BMP390	1	3.0	3.0	Measured
SAM-M8Q (GPS)	1	6.0	6.0	Datasheet
BNO055 (IMU/Tilt Sensor)	1	3.0	3.0	Datasheet
XBee Pro 900 HP	1	6.0	6.0	Datasheet
XBee Explorer Breakout Board	1	5.0	5.0	Datasheet
Linear 5.0V Regulator	1	2.0	2.0	Measured
LED	1	2.0	2.0	Datasheet
Buzzer Piezo 3V 30MM	1	8.0	8.0	Datasheet
Slide Total	-	-	42.1	-

	Probe (2 of 4)			
Component	Quantity	Mass (g)	Mass Summary (g)	Source
Previous Slide	-	-	42.1	-
Switch	1	2.0	2.0	Measured
CR2032	1	3.0	3.0	Datasheet
P-Channel MOSFET	2	2.0	4.0	Measured
CR123A Battery	2	16.0	32.0	Datasheet
Battery Holder	2	4.0	8.0	Measured
РСВ	1	15.0	15.0	Measured
Analog Feedback Micro Servo	1	15.8	15.8	Datasheet
Micro Servo	3	8.4	25.2	Datasheet
(Wires, Capacitors, Resistors, Solder)	-	40.0	40.0	Estimate
Electrical Total	-	-	187.1	-

	Probe (3 of 4)			
Component	Quantity	Mass (g)	Mass Summar	y (g) Source
Carbon Fiber Rods	4	4.0	16.0	Measured
M4 Bolts 80mm	2	6.8	13.6	Manufacturer
M4 Nuts	6	0.7	4.2	Manufacturer
Rigid PETG Tube 25mm	1	20.3	20.3	Estimate
Cardboard tube 229mm	1	41.4	41.4	Manufacturer
M5 Eye Nut	1	7.0	7.0	Manufacturer
M3 Bolts 20mm	4	3.85	15.4	Estimate
M3 Bolts 14mm	4	2.4	9.7	Manufacturer
Nylon Parachute	1	20.0	20.0	Estimate
Nylon Heat Shield	1	15.0	15.0	Estimate
Deployment Hinge Plate	1	28.7	28.7	Measured
Slide Total	-	-	191.3	-

	Probe (4 of 4)			
Component	Quantity	Mass (g)	Mass Summar	y (g) Source
Previous Slide	-	-	191.3	-
Electrical enclosure	1	20.0	20.0	Measured
Top Plate	1	19.1	19.1	Estimate
Nose Cone	1	28.7	28.7	Estimate
Base Plate	1	17.0	17.0	Estimate
Flag Servo Mount	1	3.5	3.5	Estimate
Parachute Servo Mount	1	4.7	4.7	Estimate
3D Printed Deployment Components	1	25.7	25.7	Estimate
Metal Deployment Components	1	9.0	9.0	Estimate
Mechanical Total	-	-	319.0	-
Electrical Total	-	-	187.1	-
Probe Total	-	-	506.1	-

Probe Mass Total	506.1g
Container Mass Total	195.7g
CanSat Mass Total	701.8g

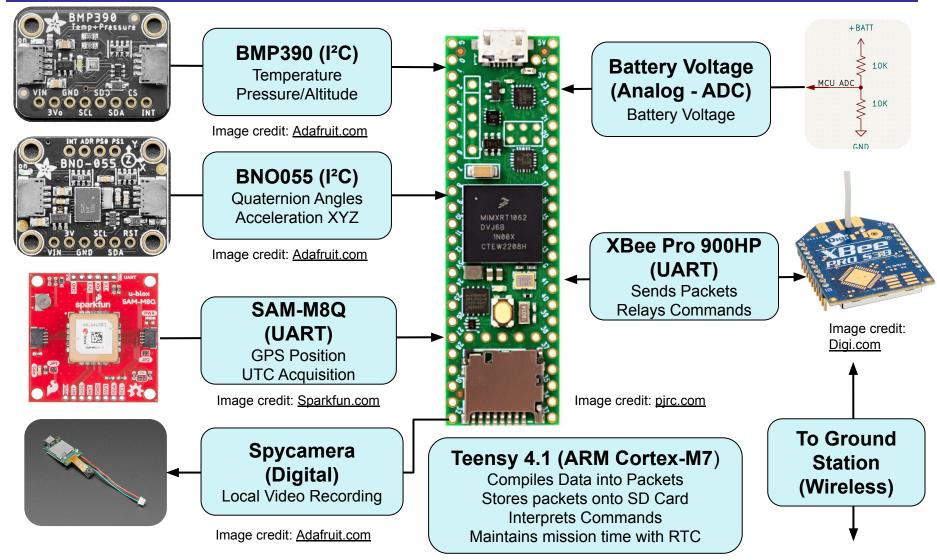
701.8 - 700.00 = +1.8 Above Ideal Mass of 700g Within Mass limit of 690g-710g

Methods to reduce CanSat mass:

- Re-design container electronics housing
- Remove probe electronics housing and design a new buzzer mount
- Research alternative flag raising mechanisms

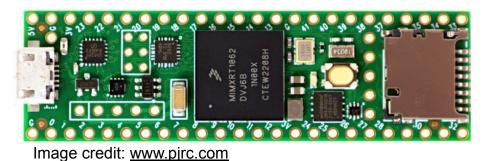
Methods to increase CanSat mass:

- Increase infill on 3D printed parts to increase structural integrity
- Add mass (washers) to nose cone to lower center of mass


Communication and Data Handling (CDH) Subsystem Design

Presented by Brennan Begley and Emann Rivero

Payload Command Data Handler (CDH) Overview



Payload Processor & Memory Trade & Selection

Module	Boot Time (ms)	Processor Speed (MHz)	RAM (KB)	Data Storage	Comm. Languages	Ports	Price (\$)
Teensy 4.1 (ARM Cortex-M7)	5	600	1024	Yes	8 UART 3 SPI 3 I2C	55 digital input/output 35 PWM outputs 18 analog inputs	31.50
Raspberry Pi Pico (RP2040)	20	400	264	No	2 UART 2 SPI 2 I2C	26 digital input/output PWM output pins 3 analog inputs	4.00
Teensy 4.0 (ARM Cortex-M7)	5	600	1024	No	7 UART 3 SPI 3 I2C	40 digital input/output 31 PWM outputs 14 analog inputs	23.80

Selection: Teesy 4.1

- Low start-up time
- Most useable ports
- Integrated SD card reader/writer
- Fast processing speed

Module	Time Accuracy (ns)	Battery	Lifetime (hours)	Price
Teensy 4.1	± 1.2	CR2032	24	Included with Teensy 4.1
SAM-M8Q	± 60	LR44	4	Included with SAM-M8Q

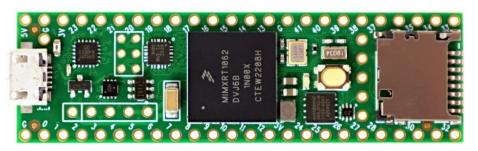
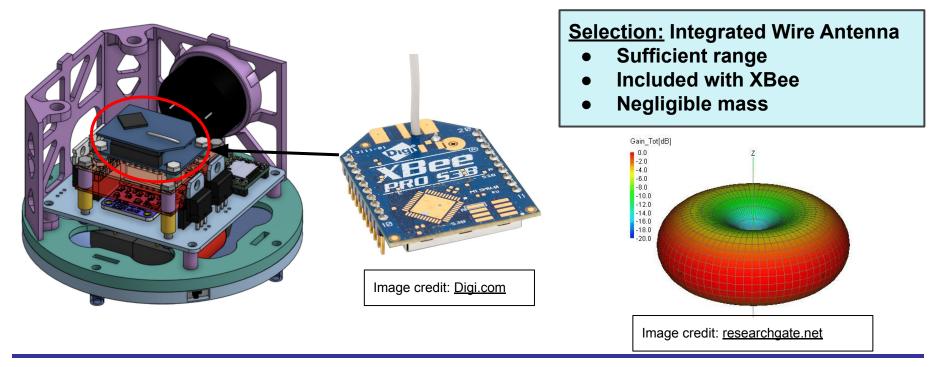


Image credit: <u>www.pjrc.com</u>

Selection: Teensy 4.1

- Integrated with Teensy module
- High accuracy
- Use with any 3.3V cell
- Long lifetime


Note: External CR2032 coin cell battery will be used to independently power the RTC

Payload Antenna Trade & Selection

Module	Range (km)	Gain (dBi)	Pattern	Mass (g)	Price
Integrated Wire Antenna	3.2	1.9	Omnidirectional	<1	Integrated
A24-HASM-450	4.0	2.1	Omnidirectional	5	\$6.60

XBee Radio Selection : XBee-Pro 900HP

NETID: 1079

Transmission Method: Unicast

Transmission Protocol: XBees will initialize and boot sensors, waiting for CX_ON Command. Once said command is sent, Probe XBee will transmit telemetry at a rate of 1 Hz to Ground XBee regardless of selected flight mode (simulation or flight). On landing, Probe XBee will cease transmission after receiving CX_OFF.

Configuration					
XBee	Mode	Dest. High	Dest. Low		
Probe	API 2	Ground Serial High	Ground Serial Low		
Ground	API 2	Probe Serial High	Probe Serial Low		

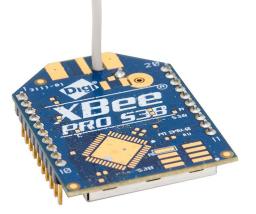


Image credit: digi.com

Competition Given Telemetry Format

<TEAM_ID>, <MISSION_TIME>, <PACKET_COUNT>, <MODE>, <STATE>, <ALTITUDE>, <HS_DEPLOYED>, <PC_DEPLOYED>, <MAST_RAISED>, <TEMPERATURE>, <PRESSURE>, <VOLTAGE>,<GPS_TIME>, <GPS_ALTITUDE>, <GPS_LATITUDE>, <GPS_LONGITUDE>, <GPS_SATS>, <TILT_X>, <TILT_Y>, <CMD_ECHO>

Example Telemetry Packet

"1079, 01:23:45, 560, S, DESCENT, 30.52, P, C, N, 24.45, 101.3, 5.4, 12:34:55, 329.52, 20.0035, 2.1940, 400, 12.39, 39.12, CMD,1079,SIM,ENABLE"

Example CX_ON Command

"CMD,1079,CX,ON"

Payload Telemetry Format (2 of 3)

Data Field	Description	Units
<team_id></team_id>	Four-digit identification number	N/A
<mission_time></mission_time>	UTC time since mission start with resolution of 1 seconds	hh:mm:ss:ms
<packet_count></packet_count>	Number of packets since mission start	N/A
<mode></mode>	Container and GS mode (flight or simulation)	N/A
<state></state>	Operating state of software i.e 'Launch'	N/A
<altitude></altitude>	Height above launch site with resolution of 0.1 meters	m
<hs_deployed></hs_deployed>	'P' indicates deployed heat shield, else 'N'	N/A
<pc_deployed></pc_deployed>	'C' indicates probe parachute deploy, else 'N'	N/A
<mast_raised></mast_raised>	'M' indicates flag mast has raised, else 'N'	N/A
<temperature></temperature>	Temperature of CanSat with resolution of 0.1 degrees	C°
<pressure></pressure>	Pressure measured from the Probe with resolution of 0.1 kPa	kPa
<voltage></voltage>	Voltage of CanSat power bus with resolution of 0.1 volts	V

Payload Telemetry Format (3 of 3)

Data Field	Description	Units			
<tilt_x></tilt_x>	Angle of CanSat X axis with resolution of 0.01 degrees, where Z points towards center of earth	o			
<tilt_y></tilt_y>	Angle of CanSat Y axis with resolution of 0.01 degrees, where Z points towards center of earth	٥			
<accel_x></accel_x>	Acceleration of the CanSat towards the X axis with resolution 0.0001	m/s²			
<accel_y></accel_y>	Acceleration of the CanSat towards the Y axis with resolution 0.0001	m/s²			
<accel_z></accel_z>	Acceleration of the CanSat towards the Z axis with resolution 0.0001	m/s²			
<gps_altitude></gps_altitude>	Altitude as calculated by the GPS with resolution of 0.1 meters	m			
<gps_latitude></gps_latitude>	Latitude as calculated by GPS with resolution of 0.0001 degrees	°North/°South			
<gps_longitude></gps_longitude>	Longitude as calculated by GPS with resolution of 0.0001 degrees	°East/°West			
<cmd_echo></cmd_echo>	<cmd_echo> Text of last command received and processed</cmd_echo>				

Payload Command Formats

Command Declaration	Team ID	Command Name	Option Description	Example	Command Description
CMD	1079	сх	ON	"CMD,1079,CX,ON"	Activates receiving telemetry.
CMD	1079	СХ	OFF	"CMD.1079,CX,OFF"	Deactivates receiving telemetry.
CMD	1079	ST	UTC	"CMD,1079,ST,UTC"	Sets time on the probe to UTC Time
CMD	1079	ST	GPS	"CMD,1079,ST,GPS"	Sets time on the probe to UTC time given by GPS
CMD	1079	SIM	ENABLE	"CMD,1079,SIM,ENABLE"	Enters Simulation Mode and prevents initiating Flight Mode.
CMD	1079	SIM	ACTIVATE	"CMD,1079,SIM,ACTIVATE"	Activates Simulation Mode.
CMD	1079	SIM	DISABLE	"CMD,1079,SIM,DISABLE"	Disables Simulation Mode.
CMD	1079	SIMP	Custom	"CMD,1079,SIMP,XYZ"	Sends an input pressure to the probe.
CMD	1079	CAL	N/A	"CMD,1079,CAL"	Resets all saved values on the probe to zero.

Electrical Power Subsystem (EPS) Design

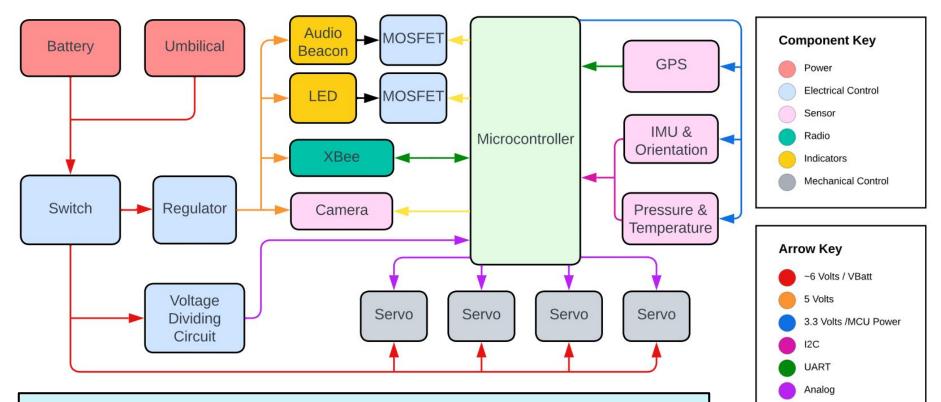
Presented by Mason Mills

EPS Overview

<u>Umbilical:</u> Disconnecting plug from the batteries that can be used with an external power source	Battery: Two CR123A SureFire batteries , each 3V, outputting a combined ~6V	Umbilical Battery Diode
Diode: Prevents the reverse flow of electricity	Switch: Gate that turns on and off the electrical system	Switch
Regulator: Reduce voltage from batteries to 5.0V providing required voltage to components	MOSFET: Programmable switch used to control the supply of power to specific components	MCU Power Regulator Servo Sensors MOSFET Camera
MCU Power:		

Internal regulator of MCU reduces 5.0V input to 3.3V output that powers each sensor

Audio

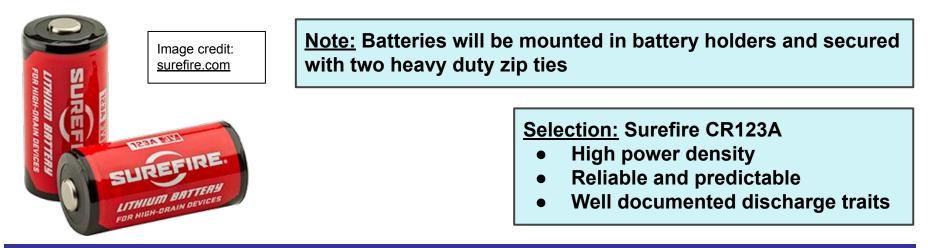

Beacon

LED

Payload Electrical Block Diagram

- Switch located in the nose cone, easily accessible from the shell located at the bottom of the CanSat
- To read voltage, power will pass through a VDC which will then be read by the microcontroller and verified by the ground station

Digital


Ground

Payload Power Trade & Selection

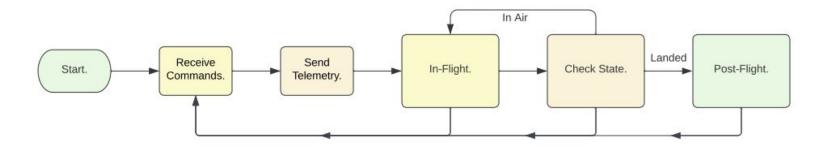
Battery	Voltage (V)	Capacity (mAh)	Quantity Needed	Layout	Power Density (mWh/g)	Voltage Drop After Two Hours (V)	Unit Weight (g)	Unit Price (\$)
Surefire CR123A	3.0	1550	2	Series	273.5	< 0.5 per cell < 1.0 Total	17	1.80
Exell EB-CR12 3A	3.0	1700	2	Series	283.3	Not Listed	18	2.00
Duracell Ultra 223	6.0	1400	1	Series	221.1	1.0 - 2.0	38	11.75

Payload Power Budget (1 of 2)

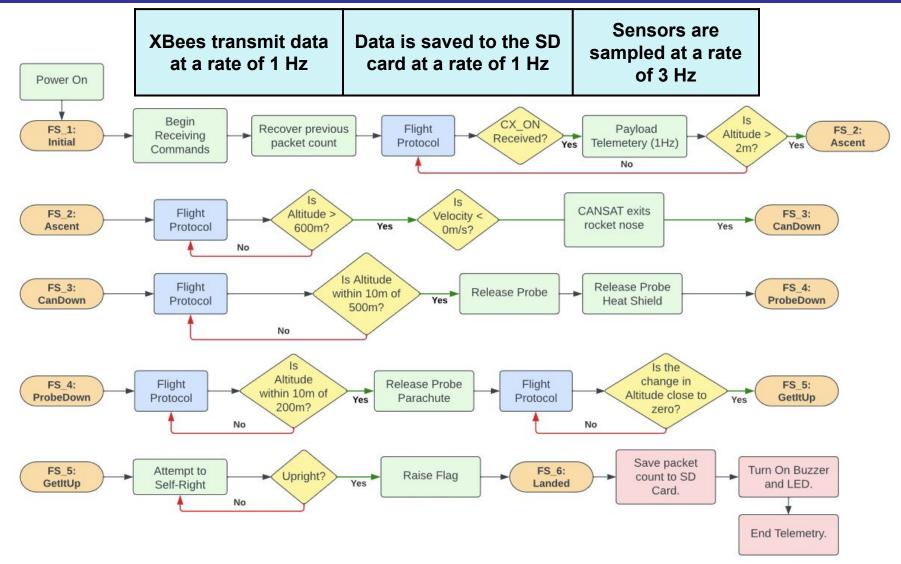
Component	Voltage (V)	Active Draw (mA)	Active Duration (h)	ldle Draw (mA)	Idle Duration (h)	Quantity	Energy (Wh)	Source	
BMP390	3.3	1.05	2.00	0 0.002 0.00 1		0.007	Datasheet		
SAM-M8Q	3.3	29.00	2.00	9.500	0.00	1	0.191	Datasheet	
XBee	5.0	229.00	2.00	0.003	0.00	1	2.290	Datasheet	
BNO055	3.3	12.30	2.00	0.330	0.00	1	0.081	Datasheet	
PUI 3V Piezo Buzzer	5.0	25.0	0.50	0.000	1.50	1	0.063	Datasheet	
LED	5.0	100.00	0.16	0.000	1.84	1	0.080	Datasheet	
Adafruit Spycamera	5.0	110.00	2.00	80.000	0.00	1	1.100	Datasheet	
Teensy 4.1	5.0	100.00	2.00	11.730	0.00	1	1.000	Datasheet	
Metal Gear Micro Servo	6.0	154.00	0.05	0.025	1.95	1	0.046	Measured	
Plastic Gear Servo	6.0	120.00	0.01	0.000	1.99	3 0.022		Datasheet	

Energy Consumption Subtotal (Wh):	4.9
Power Supply Efficiency :	81.7 %
Total Energy Consumption (Wh):	6.0
Available Battery Capacity (Wh):	9.3
Percent of Battery Used:	64.5 %
Energy Margin (Wh):	3.3
Remaining Battery Percentage:	35.5 %

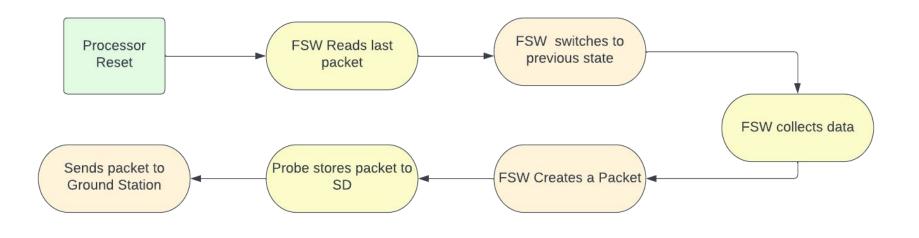
Flight Software (FSW) Design

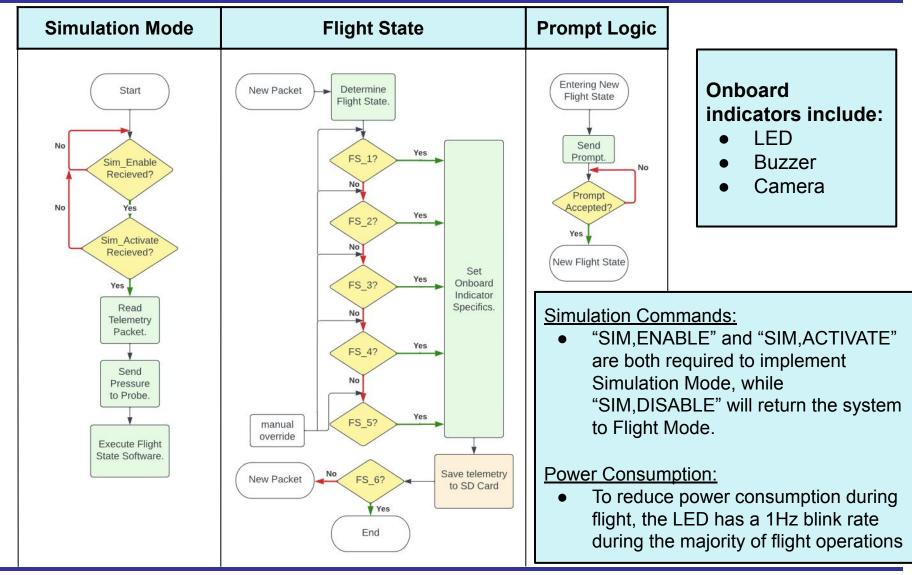

Presented by Emann Rivero

<u>Start:</u>	<u>In-Flight:</u>	Post-Flight:							
 Boot all sensors Power all devices Read previously saved packet Calibrate to zero and begin mission time 	 Determine flight state Record video from container and payload cameras Release descent mechanisms based on flight state Blink LED 	 Set buzzer on, blink LED, raise mast End recordings Save telemetry to SD card through processor resets 							


Note: Flight software is developed in the Arduino IDE using Arduino

Payload FSW State Diagram (1 of 2)




After Processor Restart:	Power Failure:
The payload will read the previous telemetry packet	Packet count and Flight
Assign a flight state according to previous packet	state will be stored to the
Sensors restart data collection	Teensy 4.1's internal
FSW obtains sensor data and creates a packet	EEPROM, to act as a
The packet is then sent to the SD card	backup in case of power
Another copy is sent to the Ground Station for data	failure during processor
processing and analysis	restart operations.
Processor resets occur on MCU power loss	

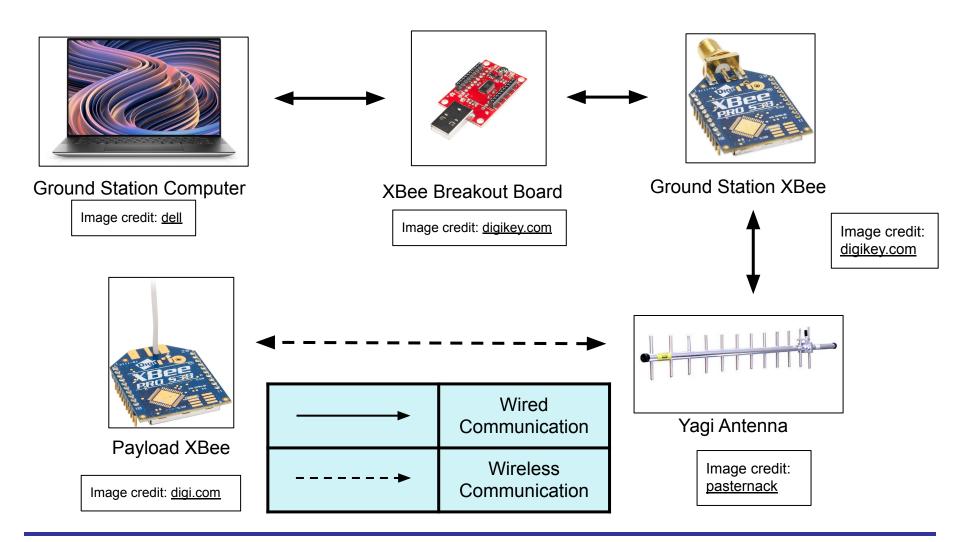
Simulation Mode Software

Software Development Plan

Name	Start Date	End Date	Octo	ber	١	Nove	mber	2	Dece	ember		Ja	anuar	y		Febr	uary	l(Ma	arch		Ap	oril		May		
General			17			14	21		12									27	13				17			22	
Team Formation	10/10/2022	10/30/2022																									
MCR Phase	10/24/2022	12/2/2022																									
PDR Phase	12/2/2022	2/6/2023																									
CDR Phase	2/6/2023	4/14/2023																									
Test-Launch Phase	4/14/2023	5/7/2023																									
Competition Phase	5/7/2023	6/11/2023																									
Software Team																											
State Machine	10/10/2022	11/16/2022																									
Ground Station Development	11/16/2022	1/19/2023																									
Prototyping	11/16/2022	1/19/2023																									
Radio Testing	1/20/2023	2/15/2023																									
Parts Order and Sensor Testing	1/20/2023	2/27/2023																									
Debugging	2/15/2023	6/10/2023																									

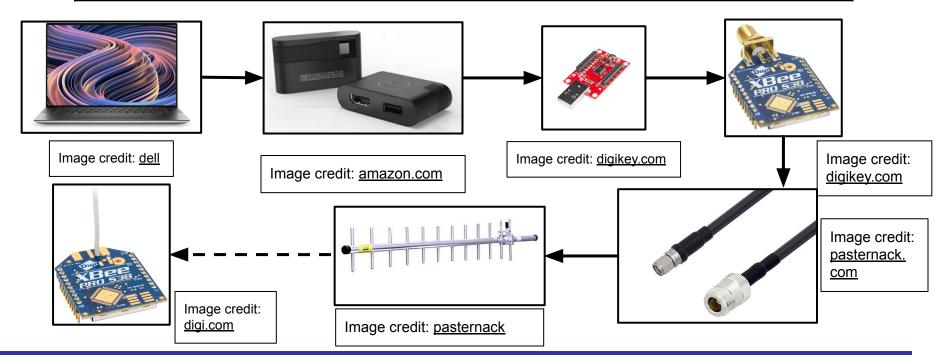
Software Development Progress (Enrico Addy and Emann Rivero)

- Large portions of software development will be aligned with electrical development to prototype and test as quickly as possible.
- Testing will largely involve flight simulation with the given simulation profile, sensor initialization, and sensor calibration.


Ground Control System (GCS) Design

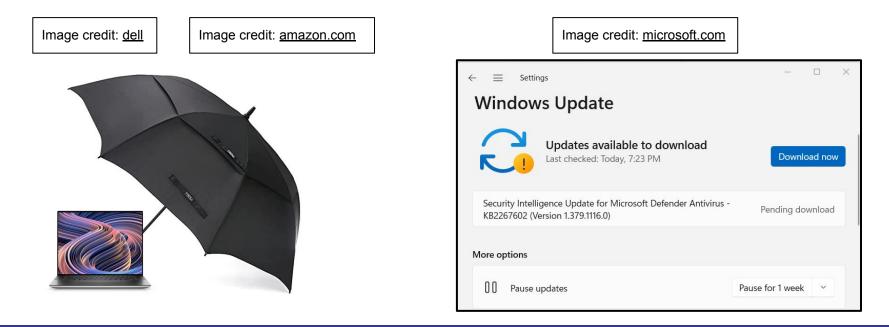
Presented by Enrico Addy

GCS Overview

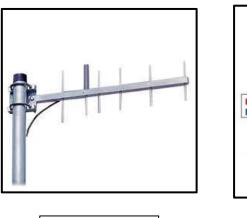


GCS Communication Pathway

- The GS is hosted locally on a Dell XPS 15, from which telemetry is communicated through two USB connectors to the Ground XBee
- The ground XBee communicates via the SMA Male to N Female connector to reach the handheld antenna, which relays telemetry to the Probe XBee



GCS Specifications


- The GS Computer will be set to pause updates for one month surrounding Flight Day, and the Windows update device will be stopped for the same period.
- As seen in the technical diagram, a laptop sunshade will be used to shield the GS computer from the sun.
- GS computer has a run time of 3 hours.
- A backup mobile power source will be available to extend run time

Model	Mount	Gain (dBi)	VSWR	Cost (\$)
Laird PC906N Yagi	Handheld	8.5	1.5:1	65.68
Pasternack PE51012 Yagi	Handheld	11.0	1.5:1	66.99
Digi A24-HASM-525	Tabletop	2.1	2:1	31.88

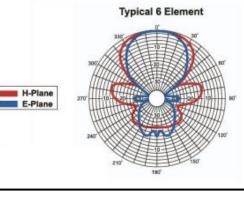


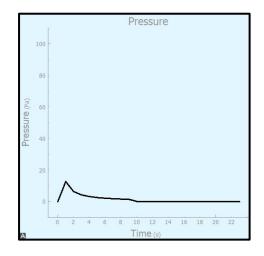
Image credit: laird connectivity

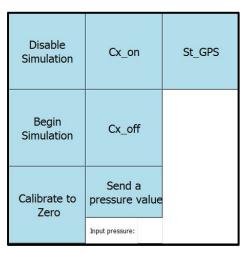
Selection: Laird PC906N Yagi

- Availability without purchase
- Sufficient gain and VSWR

Image credit:

arcantenna.com





Ground Station made in Python 3 with PyQt5, CSV, and Digi-XBee packages

Command Software and Interface	 Using the PyQtGraph module of PyQt5, graph items will be updated as information is read from the CanSat XBee
Real-Time Plotting	 All mission requirement commands can be selected through two dropdowns with their names and acceptable options For quick access, important commands can be sent through a series of buttons
Simulation Mode	 When the SIM_ENABLE and SIM_ACTIVATE commands are sent, information read from CSV file is sent to CanSat CanSat uses given information to run through flight protocol, returning sensor values

CMD,1079,	cx	•	manual
Previous Command NULL	OFF	•	auto

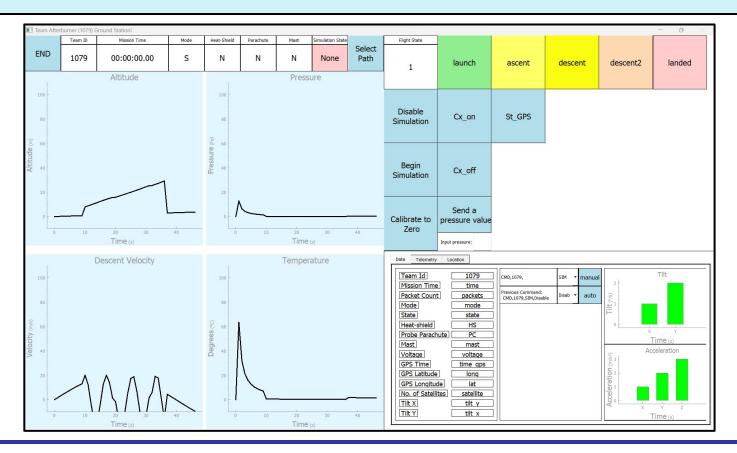
CSV File Creation

- After deciding to enter Simulation Mode a file dialog box will open, allowing selection of read-only CSV file.
- Information in this file is read to the Probe once per second, and return telemetry is saved to a Flight_1079.csv file.
- On GS termination another file dialog will open, copying above file to a new location as input.
- In Flight Mode, flight telemetry will be saved to our CSV file and GS termination behavior will occur as input.

Data Selection

Data Saving

$\rightarrow \rightarrow \uparrow$	With the second seco	itches v C a	Search scratches		Look in:	3 3 6 📈 🖽
Organize - New fol	der		≣ • [0	My Computer Name	Size Type Date Modified
A Home	Name	Date modified	Туре	Size	Flight_1079.csv	64es csv File 1/22/2:49 PM
	🖾 flight	10/16/2022 10:21 PM	Microsoft Excel Co	1	Test_Flight1.csv	0 bytes csv File 1/22/2:49 PM
	Flight_1079	1/21/2023 3:46 PM	Microsoft Excel Co	0	Test_Flight2.csv Test_Flight3.csv	21es csv File 1/22/2:50 PN 39es csv File 1/22/2:51 PN
Desktop 🖈	scratch_file	11/18/2022 1:05 PM	Microsoft Excel Co	ī	Test_Flight4.csv	0 bytes csv File 1/22/2:51 PM
↓ Downloads オ	scratch_file2	11/17/2022 9:06 PM	Microsoft Excel Co	1		
Documents 🖈	students	12/13/2022 6:43 PM	Microsoft Excel Co	1		
🔀 Pictures 🛛 🖈						
🕑 Music 🔹 🖈						
🔰 Videos 🛛 🖈				-		
File na	ame: scratch file2	~ Da	ata File (*.csv)	~	File name: Flight_1079.csv	Save


PC_	<u>F</u> ile <u>E</u> c	lit <u>V</u> iew <u>N</u> avi	🖪 Tea	mAfterburner - C:\Users	
	ches 👌 👪	scratch_file2.cs	Scratches 🛛 🎆 Flight_1079.csv		
	🕹 main.p	y 🛛 📸 actua	🔡 Flight		
Pro			1	1,0.079	
				2,0.158	
		100		100,7.894	
		111		111,8.763	
		122		122,9.632	
		134		134,10.579	
		145		145,11.448	
		157		157,12.396	
		168		168,13.266	
		179		179,14.135	
		189		189,14.925	
		198		198,15.636	
		200		200,15.794	
		210		210,16.585	
		221		221,17.454	
		231		231,18.245	
		242		242,19.114	
		252		252,19.905	
		263		263,20.775	
		274		274,21.645	
		285		285,22.515	
10	0	207	20	111 50 701	

Calibration Processing

To verify correct communication, sensors will be calibrated prior to displaying telemetry. If there are no shifts in sensor data greater than 5% without probe movement, sensors are considered to be calibrated.

CanSat Integration and Test

Presented by Cole Lenhart

Test	Testing plan	
Individual Subsystem Testing	 Test each individual subsystem, such as the CDH, electrical, mechanical, and software systems to identify problems that need to be solved before integration 	
Integration Testing	 As we integrate each of the subsystems with each other, we will test the fit and the function of each of the subsystems to identify any issues and fix them as we test them 	
Environmental Testing	 After the full integration of the CanSat, we will test the entire assembly to the environmental testing standards defined by the mission guide 	
Simulation Testing	 The CanSat will be put into testing mode with the two step commands to receive simulated launch data from the ground station instead of the sensors to demonstrate functionality 	
Test Launch	 We will construct an L1 rocket similar to the launch day rockets to test the CanSat in its entirety to identify any unaccounted for issues before competition 	

Subsystem Level Testing Plan (1 of 2)

Sub System	Components	Testing plan	Pass Requirement
Sensors	BNO055 BMP390 SAM-M8Q	 Test sensors individually Calibrate sensors Test sensor accuracy 	 Sensors calibrate correctly Accurate readings compared to data sheet
СДН	BNO055 BMP390 SAM-M8Q Teensy 4.1	 Verify communication between sensors and microcontroller Verify data logging and mid-flight recovery 	 Communication between MCU and sensor suite MCU internally logs data
EPS	PCB Sensors MCU	 2 hour battery endurance test Test voltages for all sensors Test reverse polarity protection 	 System remains powered on after 2 hours Reverse voltage is below operation voltage
Radio Comms.	MCU XBees Ground Station	 Test long distance radio communication between XBees Test two-way communication Test for optimal antenna position 	 Packets sent between probe and ground station Probe receives commands from ground station

Sub System	Testing plan	Pass Requirement(s)	
FSW	 Test transitions between simulation and flight states in code Test flight protocol for start-up and reset Test calibration with each sensor with commands Test time set code with GPS sensor 	 Flight states switch on time Sensors show calibrated values Probe RTC is set by GPS time in UTC The probe can restore its previous state after processor reset 	
Mechanical	 Test parachute and heat shield mechanisms' functionality and reliability Test probe release mechanism strength and reliability Test flag release mechanism functionality and reliability Test CanSat structural integrity via environmental testing 	 Parachute deploys when commanded by MCU Probe deploys while on battery power Flag raised to 500mm after commanded by MCU The structure passes all environmental testing 	

Subsystem	Testing plan	Pass Requirement(s)
Descent	 Drop tests ensure parachute descent speeds are accurate to 1 m/s of desired speeds (weight will be added to simulate the mass of the electronics) Drop test to ensure heat shield falls at a speed of <20 m/s (weight will be added to simulate the mass of the electronics) Heat shield passive stabilization and CanSat center of mass tests CanSat descent will be tested before competition via test launch 	 The descent speed of the probe is 5m/s ± 1 m/s with the parachute deployed The descent speed of the container and probe is 15m/s ± 5 m/s with the parachute deployed The descent speed of the probe is 20m/s ± 5 m/s with heat shield deployed The probe is aerodynamically stable with heat shield deployed Descent mechanisms function correctly during test launch
Communication	 Test long distance radio communication between XBees Test communication under probe battery power Test two-way communication Test for optimal antenna position CanSat communications will be tested before competition via test launch 	 Communication is stable at a range of 1000 meters The probe receives commands and sends packets Probe sends packets for a minimum of 2 hours under battery power Communications remain stable during test launch

Subsystem	tem Testing plan Pass Requirement(s)	
Mechanisms	 Test heat shield deployment mechanism Test self righting system Test flag deployment spring and servo Test servo and pin for probe release mechanism Test structural integrity of entire structure via environmental tests CanSat mechanisms will be tested before competition via test launch 	 Heat shield deploys to set positions Probe is able to upright itself The probe can successfully release from the container The CanSat withstands all forces applied to it during environmental tests Mechanisms survive the forces applied to them during the test launch
Deployment	 Test the parachutes to assure they won't become tangled on release Test tolerances between parachutes, container/probe, and rocket Test the tensile strength of parachute chords via environmental drop tests CanSat deployment will be tested before competition via test launch 	 The parachute deploys when the release servo is activated The parachute cords and mounts are able to withstand the shock forces that they are exposed to The parachute cords and mounts are able to withstand the forces of the test launch

Test	Testing plan	Pass Requirement(s)
Drop test	 The goal of this test is to ensure that the CanSat can survive 30Gs of shock We will attach a 81 cm line to the parachute, and drop it to simulate the shock of the CanSat leaving the rocket body 	 The parachute cords and mounts are able to withstand the 30Gs of shock forces without breaking Batteries and electronics remain firmly attached to the CanSat body
Thermal test	 The goal the thermal test is to ensure that the entire CanSat can operate successfully in a 60 °C environment We will build a thermal chamber to contain the CanSat and place the functioning CanSat into the 60 °C chamber for a duration of two hours 	 CanSat remains fully functioning after being left in the thermal chamber for two hours

Test	Testing plan	Pass Requirement(s)
Vibration test	 The vibration test is to ensure that the structure and internals of the CanSat will survive the rattling of the rocket as it rises The CanSat will be attached to an orbital sander which will be cycled for five intervals of five seconds 	 CanSat remains structurally intact after being placed in the orbital sander Electrical components and batteries remain attached to the CanSat after being placed in the orbital sander
Fit Check	 The fit check is to ensure that the CanSat will fit in the rocket on flight day and deploy without issues We will construct a rocket payload section and test tolerances between the payload wall and CanSat 	 CanSat comfortably fits in the rocket payload section CanSat deploys from the rocket payload section

Test	Testing plan	Pass Requirement(s)
Vacuum Check	 Test the flight software and the integrated CanSat while simulating the ascent and descent of the probe We will construct a vacuum chamber and then simulate the air pressure changing to ensure that all systems and flight software is working 	 The CanSat functions correctly and passes all flight states as the pressure simulates different altitudes The cameras record the deployment and raising of the flag

Test	Testing plan	Pass Requirements(s)
Accuracy test	 The goal is to ensure that each of the CanSat's sensors are functioning correctly and recording correct data We will test this by attempting to start each sensor and examining transmitted data against a control set of data 	 Data is within 1% of the control values
Command Test	 The goal of this test is to ensure that the CanSat is correctly receiving and implementing commands We will send each of the mission requirement commands to the CanSat, along with select custom commands 	 The CanSat passes this test if all commands are interpreted correctly

Test	Tested Components	Testing plan	Pass Requirement(s)
Simulation test	BMP390 Teensy4.1 XBee Ground Station	 The goal of this test is to complete a successful run of the Simulation Mode We will test this by running Simulation Mode with a given set of pressure values 	 Values returned though Simulation Mode are consistent with a sample solution CanSat performs actions expected at certain altitudes

Mission Operations & Analysis

Presented by Brennan Begley

Event	Obj	ective	Team
Arrival	Arrive at La	unch Location	All
Pre-Launch	Assemble CanSat	and Ground Station	CanSat
	Turn Ca	anSat On	CanSat
Launch	Rocket - Can	Sat Integration	CanSat
	Validate Signal Acquisition		Ground Station
Flight	Monitor CanSat		Ground Station
Recovery	Recover CanSat		Recovery
Data Analysis	Verify Data and I	Recording Integrity	Ground Station
Mission Control Officer	Recovery Groundstation Team Team		CanSat Team
Louis McEvoy	Brennan Begley, Mason Mills	Enrico Addy, Emann Rivero	Gabriel Campos, Quinn Casper, Elena Dishman, Kyle Hughes, Cole Lenhart

Section Name	Description	
Team Roster	List of each member of the team, what their role is, when, and what they each will be doing.	
Ground Station Configuration	Process for setting up the ground station as well as initializing communication between the CanSat and the ground station.	
CanSat Preparation	Instructions for assembly and pre-flight operation of the CanSat.	
CanSat Integration	Instructions for Rocket-CanSat integration and verification of CanSat functionality.	
Launch Preparation	Instructions for delivery and installation of rocket on launch pad.	
Launch Procedure	Step by step guide for Mission Control Officer and standard operating procedures pertaining to rocket arming and launch.	

Recovery Strategy	Container	Probe
Brightly Colored	 Spray painted neon pink Parachute will be sown with neon pink fabric 	 Final parts will be printed in orange filament Parachute will be sown with neon pink fabric
Visible Beacon	N/A	Bright flashing LED
Audio Beacon	N/A	100dB beeping buzzer
GPS Position	N/A	Real Time Position within 2.5m
Team Contact	Phone number of team lead, phone number of recovery lead, email address of team lead, and the return address labeled on the container	Phone number of team lead, phone number of recovery lead, email address of team lead, and the return address labeled on the probe in two locations

Team Contact Info:

Louis McEvoy (951-395-4732); Mason Mills (205-520-6471); wlm0021@uah.edu; 901 John Wright Dr NW, Huntsville, AL 35805

Requirements Compliance

Presented by Louis McEvoy

We comply with 54 of the 60 requirements listed in the mission guide.

Partial Compliance: #12, 13, 15, 30, 37, 53

- Partially-compliant items are awaiting verification through testing.
 - Requirement #43 was omitted because it was skipped in the mission guide.
- Our goal is to complete a prototype that we can use to verify the partially-compliant requirements
- We are currently on track to comply with all requirements by CDR

Requirements Compliance (1 of 9)

#	Requirement	Compliance	Slide Referencing	Notes	Verification Method						
		State	Compliance		A	I	т	D			
1	Total mass of the CanSat (science probe and container) shall be 700 grams +/- 10 grams.	Comply	79		x	x					
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	Comply	27		x			x			
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	Comply	27			x					
4	The container shall be a fluorescent color; pink, red or or orange.	Comply	124			x					
5	The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open.	Comply	49			x		x			
6	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	Comply	27			x					
7	The rocket airframe shall not be used as part of the CanSat operations	Comply	Comply 27			x					

Requirements Compliance (2 of 9)

#	Requirement	Compliance	Slide Referencing	Notes	Verification Method					
		State	Compliance		A	I	т	D		
8	The container's parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket	Comply	27		X	x		x		
9	The Parachute shall be fluorescent Pink or Orange	Comply	124			x				
10	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	Comply	47		X		X	x		
11	0 altitude reference shall be at the launch pad.	Comply	97		X		x			
12	All structures shall be built to survive 15 Gs of launch acceleration.	Partial	111	Awaiting Testing	X			x		
13	All structures shall be built to survive 30 Gs of shock.	Partial	111	Awaiting Testing	X			x		
14	All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.	Comply	51, 72		x	x				

Requirements Compliance (3 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method						
		State	Compliance		Α	I	Т	D			
15	All mechanisms shall be capable of maintaining their configuration or states under all forces.	Partial	111	Awaiting Testing	x			x			
16	Mechanisms shall not use pyrotechnics or chemicals.	Comply	40-42, 63-71			X					
17	Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.	Comply	40-42, 63-71			x					
18	Both the container and probe shall be labeled with team contact information including email address.	Comply	124			x					
19	Cost of the CanSat shall be under \$1000. Ground support and analysis tools are not included in the cost. Equipment from previous years shall be included in this cost, based on current market value.	Comply	142		x	x					
20	XBee radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBee radios are also allowed.	Comply	85			x					
21	XBee radios shall have their NETID/PANID set to their team number.	Comply	85			x					

Requirements Compliance (4 of 9)

#	Requirement	Compliance	Slide Referencing	Notes	Verification Method						
		State	Compliance		A		Т	D			
22	XBee radios shall not use broadcast mode	Comply 85				x					
23	The container and probe shall include an easily accessible power switch that can be accessed without disassembling the CanSat and science probes and in the stowed configuration.	Comply 54, 55				x	x				
24	The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the CanSat and in the stowed state.	Comply	Comply 55			x	x				
25	An audio beacon is required for the probe. It shall be powered after landing.	Comply	55			x	x	x			
26	The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.	Comply	72				x				
27	Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.	Comply 93				x					

Requirements Compliance (5 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
		State	Compliance		Α		Т	D		
28	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	Comply	25, 54, 55			x	x			
29	Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.	Comply	54, 55, 72			x				
30	The CanSat shall operate during the environmental tests laid out in Section 3.5.	Partial	111-113	Awaiting Testing			x			
31	The CanSat shall operate for a minimum of two hours when integrated into the rocket.	Comply	95				x	x		
32	The probe shall be released from the container when the CanSat reaches 500 meters.	Comply	98				x	x		
33	The probe shall deploy a heat shield after leaving the container.	Comply 32, 98					x	x		
34	The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.	Comply	47				x	x		

Requirements Compliance (6 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
			Compliance		А		Т	D		
35	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/- 1 m/sec.	Comply	47, 98				x	x		
36	Once landed, the probe shall upright itself.	Comply	69, 71, 98				x	x		
37	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.	Partial	15, 22	Awaiting Testing			x	x		
38	The probe shall transmit telemetry once per second.	Comply	85		Х	x	x			
39	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	Comply	86-88		x		x			
40	The probe shall include a video camera pointing down to the ground.	Comply	55			x				
41	The video camera shall record the flight of the probe from release to landing.	Comply 29, 94				x	x	x		
42	The video camera shall record video in color and with a minimum resolution of 640x480.	Comply	35-36			x	x			

Requirements Compliance (7 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
			Compliance		Α	I	т	D		
44	The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.	Comply 97-99				x	x			
45	The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.	Comply	97-99			x	x			
46	The probe shall have its time set to within one second UTC time prior to launch.	Partial	Partial 97-99			x	x			
47	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.	Comply	100			X	x	x		
48	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the container altitude.	Comply	100		x		X			
49	The container flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	Comply	100				x	x		

Requirements Compliance (8 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
			Compliance		A	I	т	D		
50	The ground station shall command the CanSat to start calibrating the altitude to zero when the CanSat is on the launch pad prior to launch.	Comply	97				x			
51	The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.	Comply	108				x	x		
52	Telemetry shall include mission time with 1 second or better resolution.	Comply	87		X			x		
53	Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.	Partial	99	Awaiting Testing	X		x	x		
54	Each team shall develop their own ground station.	Comply	104			x		x		
55	All telemetry shall be displayed in real time during descent on the ground station.	Comply	Comply 107			x		x		
56	All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.)	Comply	86-88			x		x		

Requirements Compliance (9 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	,		cation hod	
		Slate	Compliance		A	I	Т	D
57	Teams shall plot each telemetry data field in real time during flight.	Comply	107			x		x
58	The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBee radio, and a hand-held antenna.	Comply	103-104			x		x
59	The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.	Comply	105			x		x
60	The ground station software shall be able to command the container to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.	Comply	100			x		x
61	When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the CanSat.	Comply	98			x		x

Management

Presented by Louis McEvoy

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
BMP390	2	10.95	21.90	Actual	
SAM-M8Q	1	42.95	42.95	Actual	
BNO055	1	34.95	34.95	Actual	
Teensy 4.1	1	31.50	31.50	Actual	
XBee Pro 900HP	1	61.23	61.23	Actual	Х
XBee Explorer Breakout Board	1	11.95	11.95	Actual	Х
New Energy LED Starboard	1	6.18	6.18	Actual	
BUZZER PIEZO 3V 30MM	1	2.78	2.78	Actual	
SPDT Switch	2	5.39	5.39	Actual	
Linear 5.0V Regulator	1	5.87	5.87	Actual	
Slide Total	-	-	224.70	-	-

CanSat Budget – Hardware (2 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide Total	-	-	224.70	-	-
P-Channel MOSFET TO-220AB	3	1.64	4.92	Actual	
CR123A Battery	2	2.00	4.00	Actual	
Cr123A Battery Holder	2	1.23	2.46	Actual	
Custom PCB	2	20.00	40.00	Budgeted	
Micro Servo Metal Gear	1	14.95	14.95	Actual	Х
DC Motor in Micro Servo Body	3	3.50	13.50	Actual	Х
Wires, Solder, Resistors, Capacitors	1	30.00	30.00	Budgeted	
Seeed RP 2040	1	5.40	5.40	Actual	
CR2450 Battery	2	3.41	6.82	Actual	
CR2450 Battery Holders	2	0.60	1.20	Actual	
Slide Total	-	-	347.95	-	-

CanSat Budget – Hardware (3 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide Total	-	-	347.95	-	-
Fiberglass shell	1	20	20.00	Estimate	
M5 40mm threaded rod	1	0.5	0.50	Actual	
M5 eye nuts	2	6.16	12.32	Actual	
M5 nuts	1	0.11	0.11	Estimate	
Nylon parachute	296.9cm^2	0.001 per cm^2	0.30	Estimate	
Paracord	128.3cm	0.004 per cm	0.51	Estimate	
Container wafer top (3D printed PETG)	39.2g	0.034 per gram	1.33	Estimate	
Container wafer bottom (3D printed PETG)	16.4g	0.034 per gram	0.56	Estimate	
Carbon fiber rods	4	2.66	10.63	Actual	
Slide total	-	-	394.84	-	-

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide total	-	-	394.84	-	-
M4 bolts 80mm	2	2	4.0	Actual	
M4 nuts	6	0.26	1.56	Actual	
Rigid PETG tube 25mm	1	1.90	1.9	Actual	
Cardboard tube	1	2.59	2.59	Actual	
M5 eye nut	1	6.16	6.16	Actual	
M3 bolts 20mm	4	1.48	5.92	Actual	
M3 bolts 14mm	4	1.48	5.92	Actual	
M3 24mm pins	4	2.21	8.84	Actual	
Nylon Parachute	1945cm^2	0.001 per cm^2	1.95	Estimate	
Paracord	328.32cm	0.004 per cm	1.31	Estimate	
Slide total	-	-	434.99	-	-

CanSat Budget – Hardware (5 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide total	-	-	434.99	-	-
Nylon heat shield	356.0cm^2	0.001 per cm^2	0.36	Estimate	
Deployment hinge plate	28.74g	0.034 per gram	0.98	Estimate	
Electrical enclosure (3D printed PETG)	20g	0.034 per gram	0.68	Estimate	
Top plate (3D printed PETG)	19.05g	0.034 per gram	0.65	Estimate	
Nose cone (3D printed PETG)	28.71g	0.034 per gram	0.98	Estimate	
Base plate (3D printed PETG)	16.97g	0.034 per gram	0.58	Estimate	
Flag servo mount (3D printed PETG)	3.52g	0.034 per gram	0.12	Estimate	
Slide total	-	-	436.34	-	-

CanSat Budget – Hardware (6 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide total	-	-	436.34	-	-
Flag raising mechanism (baton)	1	10.78	10.78	Actual	
Parachute servo mount (3D printed PETG)	4.67g	0.034 per gram	0.16	Estimate	
Misc. 3D printed deployment components	25.67g	0.034 per gram	0.87	Budgeted	
Misc. aluminum deployment components (6063 Bar Stock)	2	7.50	15.00	Budgeted	

CanSat Total = \$466.15

CanSat Budget – Other Costs

Component	Cost (\$)	Quantity	Total Cost (\$)	Source	Reuse
Ground Station Laptop (Vivobook Asus Laptop)	\$395.75	1	\$395.75	Actual	х
Laird Technologies PC906N Yagi Antenna	\$47.39	1	\$47.39	Actual	х
N Male to RP-SMA Male Coaxial Cable	\$11.99	1	\$11.99	Actual	х
SparkFun XBee Explorer USB	\$27.95	2	\$27.95	Actual	Х
XBee Pro 900HP	\$62.08	1	\$62.08	Actual	Х
USB Mini to USB A Cable	\$6.99	1	\$6.99	Actual	Х
Travel (Per Person)	\$116.67	10	\$1,166.67	Estimate	
Lodging (Per Person)	\$250.00	10	\$2,500.00	Estimate	
Food (Per Person)	\$166.67	10	\$1,666.67	Estimate	

Other Costs Total = \$5,885.49

Funding is Provided by the Alabama Space Grant Consortium

General Detailed Timeline

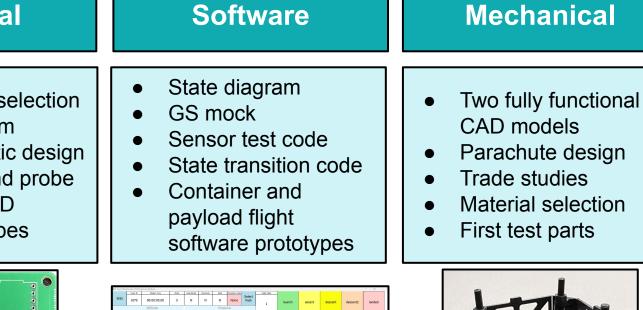
Name	Start Date	End Date	Octo	ober	Nov	embe	r	Dece	mber		Ja	anuar	Y	F	ebru	ary		į	Marc	h		Apr	ril	ĺ.,	N	Лау			Jun	e	
General			17		14	21		12						6 1		20	27						17			15	22	29	12		26
Team Formation	10/10/2022	10/30/2022																													
MCR Phase	10/24/2022	12/2/2022																													
PDR Phase	12/2/2022	1/27/2023																													
CDR Phase	1/27/2023	4/14/2023																													
Test-Launch Phase	4/14/2023	5/7/2023																													
Competition Phase	5/7/2023	6/11/2023																													
Important School Dates																															
Fall Finals	12/5/2022	12/12/2022																													
Winter Break	12/12/2022	1/6/2023																													
Spring Break	3/13/2023	3/17/2023																													
Spring Finals	4/22/2023	4/28/2023																													
Team Milestones																															
Initial Design	10/10/2022	2/6/2023																													
Prototyping	2/6/2023	4/1/2023																													
Testing	4/1/2023	5/1/2023																													
Cansat Finalization	5/1/2023	6/1/2023																													

Mechanical Detailed Timeline

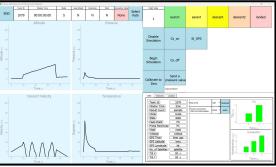
Name	Start Date	End Date	Oct	ober		Nove	embe	r	Dec	emb	er		Janu	uary		ſ	Febru	iary		Ma	rch		A	pril		May			Jur	ne	
General			17				21		12								13			13				17			22		12		26
Team Formation	10/10/2022	10/30/2022																													
MCR Phase	10/24/2022	12/2/2022																													
PDR Phase	12/2/2022	1/27/2023																													
CDR Phase	1/27/2023	4/14/2023																													
Test-Launch Phase	4/14/2023	5/7/2023																													
Competition Phase	5/7/2023	6/11/2023																													
Mechanical Team																															
Initial Brainstorming	10/10/2022	11/13/2022																													
Material Trade Studies	10/24/2022	11/20/2022																													
Decent Mechanism Models	11/7/2022	12/2/2022																													
CAD Design and Completion	12/2/2022	1/31/2023																													
Prototyping	2/1/2023	4/3/2023																													
Itegration	4/3/2023	5/7/2023																													
Environmental Testing	5/8/2023	6/10/2023																													

Electrical Detailed Timeline

Name	Start Date	End Date	Oct	ober		Nove	mber	63.	Dece	mber		J	anuar	γ		Febr	uary		Ma	rch		Ар	ril		May		Jur	ne	
General			17			14	21		12														17				12		26
Team Formation	10/10/2022	10/30/2022																											
MCR Phase	10/24/2022	12/2/2022																											
PDR Phase	12/2/2022	2/6/2023																											
CDR Phase	2/6/2023	4/14/2023																											
Test-Launch Phase	4/14/2023	5/7/2023																											
Competition Phase	5/7/2023	6/11/2023																											
Electrical Team																													
Trade Stuides	10/10/2022	11/17/2022																											
PCB Development	11/18/2022	1/9/2023																											
Parts Order and Breadboarding	1/9/2023	2/27/2023																											
Assembly	2/27/2023	3/15/2023																											
Testing	3/15/2023	4/3/2023																											
Integration	4/3/2023	5/7/2023																											
Environmental Testing	5/7/2023	6/10/2023																											


Software Detailed Timeline

Name	Start Date	End Date	Octo	ober		Nove	mber	8	Dece	embe	r	J	anua	ry		Febru	ıary		Ma	rch		Ap	oril		đ	Мау			Jun	ne	
General			17			14	21		12										13				17				22		12		26
Team Formation	10/10/2022	10/30/2022																													
MCR Phase	10/24/2022	12/2/2022																													
PDR Phase	12/2/2022	2/6/2023																													
CDR Phase	2/6/2023	4/14/2023																													
Test-Launch Phase	4/14/2023	5/7/2023																													
Competition Phase	5/7/2023	6/11/2023																													
Software Team																															
State Machine	10/10/2022	11/16/2022																													
Ground Station Development	11/16/2022	1/19/2023																													
Prototyping	11/16/2022	1/19/2023																													
Radio Testing	1/20/2023	2/15/2023																													
Parts Order and Sensor Testing	1/20/2023	2/27/2023																													
Debugging	2/15/2023	6/10/2023																													



Electrical
Component selection
Block diagram
Full schematic design
Container and probe electrical CAD
PCB prototypes

PCB Prototype

Ground Station GUI

Electrical Housing

Electrical	Software	Mechanical
 Refine PCB design Test CDH system Assembly Integration and testing with software 	 Commands Sensor testing Communication testing and integration Ground station final GUI 	 Manufacturing and prototyping Test systems Deployment and uprighting test Refine flag deployment system
	What's Next?	

What's Next?

Team Afterburner has completed all the necessary preliminary steps to move into the prototyping and manufacturing phase of development. We are on track with the timeline set both by the team and the competition. We are eager to continue work on our hardware and move towards integration within the coming months.